
Тайны резонирующего протона
Протон — одна из основных частиц, составляющих атомное ядро. Он состоит из трех кварков — элементарных частиц, которые взаимодействуют между собой с помощью сильного ядерного взаимодействия. Протон имеет положительный электрический заряд и массу, немного меньшую, чем у нейтрона — другой нуклонной частицы.
Протон может находиться в разных состояниях энергии, в зависимости от того, как возбуждаются его кварки. Одно из таких состояний называется «нуклонным резонансом» и было обнаружено физиками еще в середине прошлого века. В этом состоянии протон образует сложную структуру, включающую кварк-антикварковую пару — мезон.
Нуклонный резонанс имеет огромное значение для понимания процессов, происходивших в древней Вселенной, когда температура и плотность материи были настолько высоки, что атомные ядра не могли существовать. Однако изучение этого состояния протона представляет большую трудность, так как оно живет очень короткое время — порядка 10^-23 секунды.
Недавно команда физиков из Гиссенского университета имени Юстуса Либиха в Германии и Коннектикутского университета США смогла получить новые данные о трехмерной структуре резонирующего протона с помощью магнитного ускорителя имени Томаса Джефферсона. Ученые использовали метод ядерного магнитного резонанса (ЯМР), который позволяет определять структуру молекул по спектрам поглощения электромагнитных волн водородными атомами.
В ходе эксперимента высокоэнергетический электронный пучок был направлен на камеру с охлажденным газообразным водородом. Электроны сталкивались с протонами мишени, возбуждая их кварки и переводя их в состояние нуклонного резонанса. Затем протоны распадались на новые частицы, которые регистрировались детекторами.
— руководитель эксперимента Стефан Диль.
Анализируя данные детекторов, ученые смогли реконструировать трехмерное изображение резонирующего протона и определить его размеры, форму и распределение заряда. Оказалось, что резонирующий протон имеет более сложную и асимметричную структуру, чем спокойный протон.
Его диаметр составляет около 0,9 фемтометра (10^-15 метра), а его заряд сосредоточен в центре и на периферии. Кроме того, ученые обнаружили, что резонирующий протон имеет ненулевой магнитный момент — свойство, которое делает его похожим на маленький магнит.
Вначале в раннем космосе была только плазма, состоящая из кварков и глюонов, которые вращались вокруг, потому что энергия была очень высокой. Затем, в какой-то момент, материя начала формироваться, и первыми вещами, которые образовались, были возбужденные нуклонные состояния. Когда Вселенная расширилась дальше, она остыла, и проявились нуклоны основного состояния.
С помощью этих исследований мы можем узнать о характеристиках этих резонансов. И это расскажет нам кое-что о том, как материя образовалась во Вселенной и почему Вселенная существует в ее нынешнем виде
— Стефан Диль.
Результаты исследования помогут лучше понять, как устроена материя на самом малом уровне и как она ведет себя при экстремальных условиях. Они также открывают новые возможности для изучения других нуклонных резонансов, таких как нейтронный резонанс или дельта-резонанс.
Протон может находиться в разных состояниях энергии, в зависимости от того, как возбуждаются его кварки. Одно из таких состояний называется «нуклонным резонансом» и было обнаружено физиками еще в середине прошлого века. В этом состоянии протон образует сложную структуру, включающую кварк-антикварковую пару — мезон.
Нуклонный резонанс имеет огромное значение для понимания процессов, происходивших в древней Вселенной, когда температура и плотность материи были настолько высоки, что атомные ядра не могли существовать. Однако изучение этого состояния протона представляет большую трудность, так как оно живет очень короткое время — порядка 10^-23 секунды.
Недавно команда физиков из Гиссенского университета имени Юстуса Либиха в Германии и Коннектикутского университета США смогла получить новые данные о трехмерной структуре резонирующего протона с помощью магнитного ускорителя имени Томаса Джефферсона. Ученые использовали метод ядерного магнитного резонанса (ЯМР), который позволяет определять структуру молекул по спектрам поглощения электромагнитных волн водородными атомами.
В ходе эксперимента высокоэнергетический электронный пучок был направлен на камеру с охлажденным газообразным водородом. Электроны сталкивались с протонами мишени, возбуждая их кварки и переводя их в состояние нуклонного резонанса. Затем протоны распадались на новые частицы, которые регистрировались детекторами.
Возбуждения мимолетны, но они оставляют после себя доказательства своего существования в виде новых частиц, которые состоят из энергии возбужденных частиц, когда она разбрасывается. Эти новые частицы живут достаточно долго, чтобы детектор мог их уловить, поэтому команда могла реконструировать резонанс
— руководитель эксперимента Стефан Диль.
Анализируя данные детекторов, ученые смогли реконструировать трехмерное изображение резонирующего протона и определить его размеры, форму и распределение заряда. Оказалось, что резонирующий протон имеет более сложную и асимметричную структуру, чем спокойный протон.
Его диаметр составляет около 0,9 фемтометра (10^-15 метра), а его заряд сосредоточен в центре и на периферии. Кроме того, ученые обнаружили, что резонирующий протон имеет ненулевой магнитный момент — свойство, которое делает его похожим на маленький магнит.
Вначале в раннем космосе была только плазма, состоящая из кварков и глюонов, которые вращались вокруг, потому что энергия была очень высокой. Затем, в какой-то момент, материя начала формироваться, и первыми вещами, которые образовались, были возбужденные нуклонные состояния. Когда Вселенная расширилась дальше, она остыла, и проявились нуклоны основного состояния.
С помощью этих исследований мы можем узнать о характеристиках этих резонансов. И это расскажет нам кое-что о том, как материя образовалась во Вселенной и почему Вселенная существует в ее нынешнем виде
— Стефан Диль.
Результаты исследования помогут лучше понять, как устроена материя на самом малом уровне и как она ведет себя при экстремальных условиях. Они также открывают новые возможности для изучения других нуклонных резонансов, таких как нейтронный резонанс или дельта-резонанс.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

32 удивительных подарка за последние 20 лет: ученые пытаются понять, за что косатки «балуют» людей
Природная доброта? Любопытство? Желание выйти на контакт?...

Найдено идеальное место для жизни на Марсе
По словам ученых, оно похоже… на нашу Сибирь....

Уникальная находка в Нидерландах: археологи обнаружили римский лагерь далеко за пределами Империи
Как лидар и искусственный интеллект нашли объект-«невидимку» II века....

Тайна разгадана: стало известно, почему большинство кошек предпочитают спать строго на одном боку
Оказалось, что это древний защитный механизм, которому миллионы лет....

«Вертолетная» конструкция да Винчи может сделать беспилотники тише, быстрее и даже дешевле
Ученые поражены, насколько разработка Леонардо опередила время....

Ученые и режиссеры все время обманывали нас насчет динозавров
Оказалось, древние ящеры бегали в четыре раза медленнее, чем считалось....

Ученые хотят создать хранилище микробов, чтобы те… не вымерли
Звучит кошмарно, но на самом деле от этого зависит судьба всего человечества....