Установлен новый рекорд: самая высокая температура сверхпроводящего перехода в элементарных материалах
Команда исследователей из Университета науки и технологии Китая (USTC) Китайской академии наук (CAS), под руководством профессора Чена Сяньхуи, сделала последний прорыв, достигнув нового рекорда — критической температуры сверхпроводимости в 36 K для элементарных материалов при высоком давлении. Эти результаты были опубликованы в престижном научном журнале Physical Review Letters.
Исследование сверхпроводимости в элементарных материалах играет важную роль в расширении нашего понимания этого фундаментального явления. С момента открытия сверхпроводимости в ртутном элементе в 1911 году, было обнаружено, что более 50 элементов обладают свойствами сверхпроводимости при атмосферных условиях или высоких давлениях. Однако большинство элементов имеют низкие критические температуры сверхпроводимости (Tc). До последнего времени рекорд составлял 26 К для титана (Ti) при высоком давлении.
В 2004 году американский физик Нил Эшкрофт предсказал, что водород, самый простой и распространенный элемент во Вселенной, может стать сверхпроводником при экстремальном давлении (более 100 ГПа) и достичь критической температуры около 300 K (27 °C). Он предложил теорию о том, что при высоком давлении водород может образовывать металлическую фазу с сильным взаимодействием электронов и фононов (колебаний решетки). Это взаимодействие, согласно Эшкрофту, может привести к сверхпроводимости с очень высокой критической температурой, возможно даже превышающей комнатную температуру.
Однако экспериментальная реализация этого предсказания оказалась очень сложной, так как требовала создания и поддержания очень высокого давления на маленьких образцах водорода. Кроме того, было неясно, какая именно фаза водорода является сверхпроводником и какова ее структура. В последние годы было сделано несколько попыток достичь сверхпроводимости в водороде или его соединениях под высоким давлением, но результаты были неоднозначными или спорными.
В 2015 году группа ученых из Германии, Франции и США сообщила об обнаружении сверхпроводимости при температуре 203 K (−70 °C) в сероводороде (H2S) при давлении около 150 ГПа. Это был новый рекорд для критической температуры сверхпроводимости, который превышал предыдущий рекорд на 65 K. Ученые предположили, что сверхпроводящая фаза сероводорода имеет структуру H3S, в которой атомы серы окружены трехатомными молекулами водорода. Они также предсказали, что при еще более высоком давлении температура сверхпроводимости может достигать 280 K (7 °C).
В 2017 году группа ученых из США, Китая и Канады объявила о новом достижении в области сверхпроводимости. Они обнаружили, что в соединении лантана и водорода (LaH10) сверхпроводимость может проявляться при температуре 260 K (−13 °C) и давлении около 170 ГПа. Это было значительным прогрессом в увеличении критической температуры сверхпроводимости.
Предыдущие исследования показывали, что скандий (Sc) проходит через четыре структурных фазовых перехода при различных давлениях. Однако сверхпроводимость скандия при более высоких давлениях оставалась загадкой из-за технических ограничений ранних экспериментов.
Исследователи решили эту проблему, проводя более детальные исследования поведения скандия при экстремально высоком давлении и определяя его фазовую диаграмму сверхпроводимости. Они обнаружили, что критическая температура (Tc) скандия быстро возрастает с увеличением давления в фазе Sc-II, что было подтверждено измерениями электрического транспорта при высоких напряжениях и соответствовало предыдущим отчетам.
Кроме того, исследователи изучали физические механизмы, лежащие в основе высокой Tc скандия при высоких давлениях, при помощи первопринципных расчетов. Обнаружено, что сильное взаимодействие между d-электронами и фононами средней частоты в фазе Sc-V играет ключевую роль в формировании высокой Tc.
Эти результаты говорят о тесной связи между структурой скандия и его Tc при давлении. Новый рекорд Tc 36 K в фазе Sc-V не только устанавливает новый максимум для элементарных материалов, но и помогает лучше понять высокотемпературную сверхпроводимость в простых системах. Работа ученых из Университета науки и технологий Китая подтверждает предсказание Эшкрофта, что сверхпроводимость в водороде может быть достигнута при высоком давлении и высоких температурах. Этот новый рекорд критической температуры 36K в фазе Sc-V ставит новую отметку для элементарных материалов и приносит новые знания о высокотемпературной сверхпроводимости в простых системах. Это открытие открывает новые горизонты в исследовании сверхпроводимости и предоставляет чистую фундаментальную информацию для различных областей науки и промышленности.
Исследование сверхпроводимости в элементарных материалах играет важную роль в расширении нашего понимания этого фундаментального явления. С момента открытия сверхпроводимости в ртутном элементе в 1911 году, было обнаружено, что более 50 элементов обладают свойствами сверхпроводимости при атмосферных условиях или высоких давлениях. Однако большинство элементов имеют низкие критические температуры сверхпроводимости (Tc). До последнего времени рекорд составлял 26 К для титана (Ti) при высоком давлении.
В 2004 году американский физик Нил Эшкрофт предсказал, что водород, самый простой и распространенный элемент во Вселенной, может стать сверхпроводником при экстремальном давлении (более 100 ГПа) и достичь критической температуры около 300 K (27 °C). Он предложил теорию о том, что при высоком давлении водород может образовывать металлическую фазу с сильным взаимодействием электронов и фононов (колебаний решетки). Это взаимодействие, согласно Эшкрофту, может привести к сверхпроводимости с очень высокой критической температурой, возможно даже превышающей комнатную температуру.
Однако экспериментальная реализация этого предсказания оказалась очень сложной, так как требовала создания и поддержания очень высокого давления на маленьких образцах водорода. Кроме того, было неясно, какая именно фаза водорода является сверхпроводником и какова ее структура. В последние годы было сделано несколько попыток достичь сверхпроводимости в водороде или его соединениях под высоким давлением, но результаты были неоднозначными или спорными.
В 2015 году группа ученых из Германии, Франции и США сообщила об обнаружении сверхпроводимости при температуре 203 K (−70 °C) в сероводороде (H2S) при давлении около 150 ГПа. Это был новый рекорд для критической температуры сверхпроводимости, который превышал предыдущий рекорд на 65 K. Ученые предположили, что сверхпроводящая фаза сероводорода имеет структуру H3S, в которой атомы серы окружены трехатомными молекулами водорода. Они также предсказали, что при еще более высоком давлении температура сверхпроводимости может достигать 280 K (7 °C).
В 2017 году группа ученых из США, Китая и Канады объявила о новом достижении в области сверхпроводимости. Они обнаружили, что в соединении лантана и водорода (LaH10) сверхпроводимость может проявляться при температуре 260 K (−13 °C) и давлении около 170 ГПа. Это было значительным прогрессом в увеличении критической температуры сверхпроводимости.
Предыдущие исследования показывали, что скандий (Sc) проходит через четыре структурных фазовых перехода при различных давлениях. Однако сверхпроводимость скандия при более высоких давлениях оставалась загадкой из-за технических ограничений ранних экспериментов.
Исследователи решили эту проблему, проводя более детальные исследования поведения скандия при экстремально высоком давлении и определяя его фазовую диаграмму сверхпроводимости. Они обнаружили, что критическая температура (Tc) скандия быстро возрастает с увеличением давления в фазе Sc-II, что было подтверждено измерениями электрического транспорта при высоких напряжениях и соответствовало предыдущим отчетам.
Кроме того, исследователи изучали физические механизмы, лежащие в основе высокой Tc скандия при высоких давлениях, при помощи первопринципных расчетов. Обнаружено, что сильное взаимодействие между d-электронами и фононами средней частоты в фазе Sc-V играет ключевую роль в формировании высокой Tc.
Эти результаты говорят о тесной связи между структурой скандия и его Tc при давлении. Новый рекорд Tc 36 K в фазе Sc-V не только устанавливает новый максимум для элементарных материалов, но и помогает лучше понять высокотемпературную сверхпроводимость в простых системах. Работа ученых из Университета науки и технологий Китая подтверждает предсказание Эшкрофта, что сверхпроводимость в водороде может быть достигнута при высоком давлении и высоких температурах. Этот новый рекорд критической температуры 36K в фазе Sc-V ставит новую отметку для элементарных материалов и приносит новые знания о высокотемпературной сверхпроводимости в простых системах. Это открытие открывает новые горизонты в исследовании сверхпроводимости и предоставляет чистую фундаментальную информацию для различных областей науки и промышленности.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
Забудьте всё, что вы знали о Луне
Новая теория предлагает в корне иное происхождение ночного светила....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Янтарь из недр Антарктиды раскрыл тайны тропических лесов
Застывшая смола возрастом 90 млн лет как часть исчезнувшей экосистемы....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Носи умные очки или увольняйся!
Amazon планирует заставить всех курьеров носить этот электронный прибор....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Чудо в перьях: Робот-голубь «упорхнёт» от радиолокации
Изобретение грозит новой гонкой вооружений....