
Ловушка для микрочастиц: как одним устройством измерить четыре характеристики
Микрочастицы — объекты размером от долей до нескольких микрометров, которые составляют различные материалы, жидкости, газы, а также живые организмы. Изучение свойств микрочастиц имеет большое значение для физики, химии, биологии, медицины и других областей науки. Однако измерение характеристик таких маленьких объектов представляет собой сложную задачу, которая требует специальных методов и устройств.
Существуют разные способы определения размера, массы, заряда и плотности микрочастиц. Например, для измерения размера можно использовать микроскопию или дифракцию света, для измерения массы — масс-спектрометрию или кантилеверный метод, для измерения плотности — пикнометрию или гидродинамическую хроматографию. Однако эти методы имеют свои недостатки: они требуют сложной калибровки оборудования, работают только с определенными типами частиц (органическими или неорганическими), повреждают частицы в процессе измерения или уничтожают их после измерения.
Ученые из Университета ИТМО предложили новый подход для одновременного определения четырех основных характеристик микрочастиц: размера, массы, заряда и плотности. Для этого они использовали электродинамическую ловушку — устройство, которое создает переменное электрическое поле вокруг заряженной частицы и заставляет ее двигаться по определенной траектории. Анализируя форму этой траектории с помощью лазера и камеры, можно вычислить физические свойства частицы.
Электродинамическая ловушка состоит из четырех электродов, подключенных к переменному напряжению. Когда заряженная частица попадает в ловушку, она начинает колебаться вдоль осей X и Y под воздействием электрического поля. Если амплитуда напряжения достаточно велика, то частица выходит из состояния равновесия и начинает двигаться по ромбовидной орбите. Вершины этого ромба соответствуют точкам, из которых в ловушку подается электрическое поле.
Чтобы отслеживать положение частицы в ловушке, ученые освещали ее лазерным лучом, а высокоскоростная камера фиксировала рассеяние лазерного света. Это позволило исследователям анализировать положение частицы в каждый момент времени. Из полученных данных ученые рассчитали математические коэффициенты, которые позволили определить четыре характеристики частицы: массу, размер, заряд и плотность.
— Дмитрий Щербинин, кандидат физико-математических наук, старший научный сотрудник Международного научно-образовательного центра физики наноструктур Университета ИТМО.
Ученые проверили свой метод на 35 кварцевых микрочастицах разного размера и заряда. Они сравнили свои результаты с данными, полученными другими широко используемыми методами, такими как микроскопия, спектроскопия, масс-спектрометрия и др., чтобы оценить точность используемого подхода. Оказалось, что погрешность определения массы составила около 10%, а размера и заряда — около 16%, а плотности — около 18%. Такая точность измерений сопоставима с другими существующими на сегодня методами.
Этот метод позволяет измерять характеристики микрочастиц с высокой точностью и скоростью, не уступая другим существующим подходам. Кроме того, он имеет ряд преимуществ: не требует сложной калибровки оборудования, работает с любыми типами частиц (органическими или неорганическими), не повреждает частицы в процессе измерения. Этот метод может быть использован для исследования нано- и микроструктур различных материалов, а также для диагностики вирусов и бактерий.
Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Powder Technology.
Существуют разные способы определения размера, массы, заряда и плотности микрочастиц. Например, для измерения размера можно использовать микроскопию или дифракцию света, для измерения массы — масс-спектрометрию или кантилеверный метод, для измерения плотности — пикнометрию или гидродинамическую хроматографию. Однако эти методы имеют свои недостатки: они требуют сложной калибровки оборудования, работают только с определенными типами частиц (органическими или неорганическими), повреждают частицы в процессе измерения или уничтожают их после измерения.
Ученые из Университета ИТМО предложили новый подход для одновременного определения четырех основных характеристик микрочастиц: размера, массы, заряда и плотности. Для этого они использовали электродинамическую ловушку — устройство, которое создает переменное электрическое поле вокруг заряженной частицы и заставляет ее двигаться по определенной траектории. Анализируя форму этой траектории с помощью лазера и камеры, можно вычислить физические свойства частицы.
Электродинамическая ловушка состоит из четырех электродов, подключенных к переменному напряжению. Когда заряженная частица попадает в ловушку, она начинает колебаться вдоль осей X и Y под воздействием электрического поля. Если амплитуда напряжения достаточно велика, то частица выходит из состояния равновесия и начинает двигаться по ромбовидной орбите. Вершины этого ромба соответствуют точкам, из которых в ловушку подается электрическое поле.
Чтобы отслеживать положение частицы в ловушке, ученые освещали ее лазерным лучом, а высокоскоростная камера фиксировала рассеяние лазерного света. Это позволило исследователям анализировать положение частицы в каждый момент времени. Из полученных данных ученые рассчитали математические коэффициенты, которые позволили определить четыре характеристики частицы: массу, размер, заряд и плотность.
Предложенный метод позволяет неразрушающим способом охарактеризовать отдельные микрочастицы, например, входящие в состав различных промышленно важных материалов. Кроме того, этот подход не требует дорогостоящего оборудования, а его точность сопоставима с существующими стандартными экспериментальными методиками. В связи с этим данный подход может использоваться в аналитической химии, материаловедении, биологии и медицине для анализа различных материалов и живых микроскопических объектов. В дальнейшем мы планируем применить полученный подход для определения параметров наночастиц, локализованных в радиочастотных ловушках
— Дмитрий Щербинин, кандидат физико-математических наук, старший научный сотрудник Международного научно-образовательного центра физики наноструктур Университета ИТМО.
Ученые проверили свой метод на 35 кварцевых микрочастицах разного размера и заряда. Они сравнили свои результаты с данными, полученными другими широко используемыми методами, такими как микроскопия, спектроскопия, масс-спектрометрия и др., чтобы оценить точность используемого подхода. Оказалось, что погрешность определения массы составила около 10%, а размера и заряда — около 16%, а плотности — около 18%. Такая точность измерений сопоставима с другими существующими на сегодня методами.
Этот метод позволяет измерять характеристики микрочастиц с высокой точностью и скоростью, не уступая другим существующим подходам. Кроме того, он имеет ряд преимуществ: не требует сложной калибровки оборудования, работает с любыми типами частиц (органическими или неорганическими), не повреждает частицы в процессе измерения. Этот метод может быть использован для исследования нано- и микроструктур различных материалов, а также для диагностики вирусов и бактерий.
Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Powder Technology.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Скрытые миллиарды: население Земли оказалось гораздо больше, чем считалось
Новые исследования бросают вызов официальным демографическим данным....

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

Тайна болезней на космической станции наконец-то раскрыта!
Ученые говорят: во всем виновата… идеальная уборка на МКС....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Ученые рассказали и показали, как выглядит Антарктида без льда
Высокие горы, глубочайшие каньоны, 58 метров до Апокалипсиса и множество других тайн....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

iPhone, давай до свидания! Илон Маск презентовал инновационный смартфон PhoneX
Это устройство слишком прекрасно для нашей реальности....

Самые массовые и дикие розыгрыши на 1 апреля в мировой истории
Это вам не просто «вся спина белая»....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

Ученый рассказал, как использовались загадочные артефакты из гробницы Тутанхамона
Это было как в фильме «Мумия»: «Фараон должен воскреснуть!»...

Гигантский айсберг скрывал древнюю живую экосистему
Губки и кораллы благоденствуют на обнажившемся морском дне в месте, ранее недоступном взгляду....

Зад-ловушка: причудливое существо из янтаря было за гранью воображения
Задняя часть тела работала… как растение....