Ловушка для микрочастиц: как одним устройством измерить четыре характеристики
Микрочастицы — объекты размером от долей до нескольких микрометров, которые составляют различные материалы, жидкости, газы, а также живые организмы. Изучение свойств микрочастиц имеет большое значение для физики, химии, биологии, медицины и других областей науки. Однако измерение характеристик таких маленьких объектов представляет собой сложную задачу, которая требует специальных методов и устройств.
Существуют разные способы определения размера, массы, заряда и плотности микрочастиц. Например, для измерения размера можно использовать микроскопию или дифракцию света, для измерения массы — масс-спектрометрию или кантилеверный метод, для измерения плотности — пикнометрию или гидродинамическую хроматографию. Однако эти методы имеют свои недостатки: они требуют сложной калибровки оборудования, работают только с определенными типами частиц (органическими или неорганическими), повреждают частицы в процессе измерения или уничтожают их после измерения.
Ученые из Университета ИТМО предложили новый подход для одновременного определения четырех основных характеристик микрочастиц: размера, массы, заряда и плотности. Для этого они использовали электродинамическую ловушку — устройство, которое создает переменное электрическое поле вокруг заряженной частицы и заставляет ее двигаться по определенной траектории. Анализируя форму этой траектории с помощью лазера и камеры, можно вычислить физические свойства частицы.
Электродинамическая ловушка состоит из четырех электродов, подключенных к переменному напряжению. Когда заряженная частица попадает в ловушку, она начинает колебаться вдоль осей X и Y под воздействием электрического поля. Если амплитуда напряжения достаточно велика, то частица выходит из состояния равновесия и начинает двигаться по ромбовидной орбите. Вершины этого ромба соответствуют точкам, из которых в ловушку подается электрическое поле.
Чтобы отслеживать положение частицы в ловушке, ученые освещали ее лазерным лучом, а высокоскоростная камера фиксировала рассеяние лазерного света. Это позволило исследователям анализировать положение частицы в каждый момент времени. Из полученных данных ученые рассчитали математические коэффициенты, которые позволили определить четыре характеристики частицы: массу, размер, заряд и плотность.
— Дмитрий Щербинин, кандидат физико-математических наук, старший научный сотрудник Международного научно-образовательного центра физики наноструктур Университета ИТМО.
Ученые проверили свой метод на 35 кварцевых микрочастицах разного размера и заряда. Они сравнили свои результаты с данными, полученными другими широко используемыми методами, такими как микроскопия, спектроскопия, масс-спектрометрия и др., чтобы оценить точность используемого подхода. Оказалось, что погрешность определения массы составила около 10%, а размера и заряда — около 16%, а плотности — около 18%. Такая точность измерений сопоставима с другими существующими на сегодня методами.
Этот метод позволяет измерять характеристики микрочастиц с высокой точностью и скоростью, не уступая другим существующим подходам. Кроме того, он имеет ряд преимуществ: не требует сложной калибровки оборудования, работает с любыми типами частиц (органическими или неорганическими), не повреждает частицы в процессе измерения. Этот метод может быть использован для исследования нано- и микроструктур различных материалов, а также для диагностики вирусов и бактерий.
Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Powder Technology.
Существуют разные способы определения размера, массы, заряда и плотности микрочастиц. Например, для измерения размера можно использовать микроскопию или дифракцию света, для измерения массы — масс-спектрометрию или кантилеверный метод, для измерения плотности — пикнометрию или гидродинамическую хроматографию. Однако эти методы имеют свои недостатки: они требуют сложной калибровки оборудования, работают только с определенными типами частиц (органическими или неорганическими), повреждают частицы в процессе измерения или уничтожают их после измерения.
Ученые из Университета ИТМО предложили новый подход для одновременного определения четырех основных характеристик микрочастиц: размера, массы, заряда и плотности. Для этого они использовали электродинамическую ловушку — устройство, которое создает переменное электрическое поле вокруг заряженной частицы и заставляет ее двигаться по определенной траектории. Анализируя форму этой траектории с помощью лазера и камеры, можно вычислить физические свойства частицы.
Электродинамическая ловушка состоит из четырех электродов, подключенных к переменному напряжению. Когда заряженная частица попадает в ловушку, она начинает колебаться вдоль осей X и Y под воздействием электрического поля. Если амплитуда напряжения достаточно велика, то частица выходит из состояния равновесия и начинает двигаться по ромбовидной орбите. Вершины этого ромба соответствуют точкам, из которых в ловушку подается электрическое поле.
Чтобы отслеживать положение частицы в ловушке, ученые освещали ее лазерным лучом, а высокоскоростная камера фиксировала рассеяние лазерного света. Это позволило исследователям анализировать положение частицы в каждый момент времени. Из полученных данных ученые рассчитали математические коэффициенты, которые позволили определить четыре характеристики частицы: массу, размер, заряд и плотность.
Предложенный метод позволяет неразрушающим способом охарактеризовать отдельные микрочастицы, например, входящие в состав различных промышленно важных материалов. Кроме того, этот подход не требует дорогостоящего оборудования, а его точность сопоставима с существующими стандартными экспериментальными методиками. В связи с этим данный подход может использоваться в аналитической химии, материаловедении, биологии и медицине для анализа различных материалов и живых микроскопических объектов. В дальнейшем мы планируем применить полученный подход для определения параметров наночастиц, локализованных в радиочастотных ловушках
— Дмитрий Щербинин, кандидат физико-математических наук, старший научный сотрудник Международного научно-образовательного центра физики наноструктур Университета ИТМО.
Ученые проверили свой метод на 35 кварцевых микрочастицах разного размера и заряда. Они сравнили свои результаты с данными, полученными другими широко используемыми методами, такими как микроскопия, спектроскопия, масс-спектрометрия и др., чтобы оценить точность используемого подхода. Оказалось, что погрешность определения массы составила около 10%, а размера и заряда — около 16%, а плотности — около 18%. Такая точность измерений сопоставима с другими существующими на сегодня методами.
Этот метод позволяет измерять характеристики микрочастиц с высокой точностью и скоростью, не уступая другим существующим подходам. Кроме того, он имеет ряд преимуществ: не требует сложной калибровки оборудования, работает с любыми типами частиц (органическими или неорганическими), не повреждает частицы в процессе измерения. Этот метод может быть использован для исследования нано- и микроструктур различных материалов, а также для диагностики вирусов и бактерий.
Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Powder Technology.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Эти «красные монстры» вообще не должны существовать
Что узнали астрономы о трех невозможно огромных галактиках....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Ещё один одинокий: в Балтийском море обнаружен дельфин, который может говорить только сам с собой
Совсем как старый вдовец, которого давно не навещали близкие....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Большой мозг — не значит самый умный
Последнее исследование собак показало парадоксальные результаты....
АД-контроль: новейшая разработка облегчит жизнь гипертоникам
Ультразвуковой пластырь будет следить за давлением нон-стоп....