
Ловушка для микрочастиц: как одним устройством измерить четыре характеристики
Микрочастицы — объекты размером от долей до нескольких микрометров, которые составляют различные материалы, жидкости, газы, а также живые организмы. Изучение свойств микрочастиц имеет большое значение для физики, химии, биологии, медицины и других областей науки. Однако измерение характеристик таких маленьких объектов представляет собой сложную задачу, которая требует специальных методов и устройств.
Существуют разные способы определения размера, массы, заряда и плотности микрочастиц. Например, для измерения размера можно использовать микроскопию или дифракцию света, для измерения массы — масс-спектрометрию или кантилеверный метод, для измерения плотности — пикнометрию или гидродинамическую хроматографию. Однако эти методы имеют свои недостатки: они требуют сложной калибровки оборудования, работают только с определенными типами частиц (органическими или неорганическими), повреждают частицы в процессе измерения или уничтожают их после измерения.
Ученые из Университета ИТМО предложили новый подход для одновременного определения четырех основных характеристик микрочастиц: размера, массы, заряда и плотности. Для этого они использовали электродинамическую ловушку — устройство, которое создает переменное электрическое поле вокруг заряженной частицы и заставляет ее двигаться по определенной траектории. Анализируя форму этой траектории с помощью лазера и камеры, можно вычислить физические свойства частицы.
Электродинамическая ловушка состоит из четырех электродов, подключенных к переменному напряжению. Когда заряженная частица попадает в ловушку, она начинает колебаться вдоль осей X и Y под воздействием электрического поля. Если амплитуда напряжения достаточно велика, то частица выходит из состояния равновесия и начинает двигаться по ромбовидной орбите. Вершины этого ромба соответствуют точкам, из которых в ловушку подается электрическое поле.
Чтобы отслеживать положение частицы в ловушке, ученые освещали ее лазерным лучом, а высокоскоростная камера фиксировала рассеяние лазерного света. Это позволило исследователям анализировать положение частицы в каждый момент времени. Из полученных данных ученые рассчитали математические коэффициенты, которые позволили определить четыре характеристики частицы: массу, размер, заряд и плотность.
— Дмитрий Щербинин, кандидат физико-математических наук, старший научный сотрудник Международного научно-образовательного центра физики наноструктур Университета ИТМО.
Ученые проверили свой метод на 35 кварцевых микрочастицах разного размера и заряда. Они сравнили свои результаты с данными, полученными другими широко используемыми методами, такими как микроскопия, спектроскопия, масс-спектрометрия и др., чтобы оценить точность используемого подхода. Оказалось, что погрешность определения массы составила около 10%, а размера и заряда — около 16%, а плотности — около 18%. Такая точность измерений сопоставима с другими существующими на сегодня методами.
Этот метод позволяет измерять характеристики микрочастиц с высокой точностью и скоростью, не уступая другим существующим подходам. Кроме того, он имеет ряд преимуществ: не требует сложной калибровки оборудования, работает с любыми типами частиц (органическими или неорганическими), не повреждает частицы в процессе измерения. Этот метод может быть использован для исследования нано- и микроструктур различных материалов, а также для диагностики вирусов и бактерий.
Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Powder Technology.
Существуют разные способы определения размера, массы, заряда и плотности микрочастиц. Например, для измерения размера можно использовать микроскопию или дифракцию света, для измерения массы — масс-спектрометрию или кантилеверный метод, для измерения плотности — пикнометрию или гидродинамическую хроматографию. Однако эти методы имеют свои недостатки: они требуют сложной калибровки оборудования, работают только с определенными типами частиц (органическими или неорганическими), повреждают частицы в процессе измерения или уничтожают их после измерения.
Ученые из Университета ИТМО предложили новый подход для одновременного определения четырех основных характеристик микрочастиц: размера, массы, заряда и плотности. Для этого они использовали электродинамическую ловушку — устройство, которое создает переменное электрическое поле вокруг заряженной частицы и заставляет ее двигаться по определенной траектории. Анализируя форму этой траектории с помощью лазера и камеры, можно вычислить физические свойства частицы.
Электродинамическая ловушка состоит из четырех электродов, подключенных к переменному напряжению. Когда заряженная частица попадает в ловушку, она начинает колебаться вдоль осей X и Y под воздействием электрического поля. Если амплитуда напряжения достаточно велика, то частица выходит из состояния равновесия и начинает двигаться по ромбовидной орбите. Вершины этого ромба соответствуют точкам, из которых в ловушку подается электрическое поле.
Чтобы отслеживать положение частицы в ловушке, ученые освещали ее лазерным лучом, а высокоскоростная камера фиксировала рассеяние лазерного света. Это позволило исследователям анализировать положение частицы в каждый момент времени. Из полученных данных ученые рассчитали математические коэффициенты, которые позволили определить четыре характеристики частицы: массу, размер, заряд и плотность.
Предложенный метод позволяет неразрушающим способом охарактеризовать отдельные микрочастицы, например, входящие в состав различных промышленно важных материалов. Кроме того, этот подход не требует дорогостоящего оборудования, а его точность сопоставима с существующими стандартными экспериментальными методиками. В связи с этим данный подход может использоваться в аналитической химии, материаловедении, биологии и медицине для анализа различных материалов и живых микроскопических объектов. В дальнейшем мы планируем применить полученный подход для определения параметров наночастиц, локализованных в радиочастотных ловушках
— Дмитрий Щербинин, кандидат физико-математических наук, старший научный сотрудник Международного научно-образовательного центра физики наноструктур Университета ИТМО.
Ученые проверили свой метод на 35 кварцевых микрочастицах разного размера и заряда. Они сравнили свои результаты с данными, полученными другими широко используемыми методами, такими как микроскопия, спектроскопия, масс-спектрометрия и др., чтобы оценить точность используемого подхода. Оказалось, что погрешность определения массы составила около 10%, а размера и заряда — около 16%, а плотности — около 18%. Такая точность измерений сопоставима с другими существующими на сегодня методами.
Этот метод позволяет измерять характеристики микрочастиц с высокой точностью и скоростью, не уступая другим существующим подходам. Кроме того, он имеет ряд преимуществ: не требует сложной калибровки оборудования, работает с любыми типами частиц (органическими или неорганическими), не повреждает частицы в процессе измерения. Этот метод может быть использован для исследования нано- и микроструктур различных материалов, а также для диагностики вирусов и бактерий.
Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в журнале Powder Technology.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Планшет, пролежавший в Темзе пять лет, помог раскрыть серию запутанных преступлений
Эксперты говорят: даже вода не смогла стереть цифровые следы....

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Похоже, что проблема космического мусора в скором времени будет решена раз и навсегда
Новая технология не только очистит космос, но и поможет спутникам работать втрое дольше....

Скрытые миллиарды: население Земли оказалось гораздо больше, чем считалось
Новые исследования бросают вызов официальным демографическим данным....

Почему мы не помним себя младенцами? Новое исследование дало ответы
Возможно, помним, но «ларчик» заперт....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

Астрофизики рассказали, почему Вселенная замедляется вопреки предсказаниям Эйнштейна
Если открытие DESI и ослабление темной энергии подтвердится, учебники придется переписать....

iPhone, давай до свидания! Илон Маск презентовал инновационный смартфон PhoneX
Это устройство слишком прекрасно для нашей реальности....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

Самые массовые и дикие розыгрыши на 1 апреля в мировой истории
Это вам не просто «вся спина белая»....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

10 лет за 48 часов: ИИ полностью переиграл ученых в поисках секрета супербактерий
Однако эксперты предупреждают: нейросети не только ускоряют науку, они запросто могут столкнуть нас в пропасть....