Исследователи выращивают мозг из биополимера для создания искусственных нейронных сетей
Разработка нейронных сетей для создания искусственного интеллекта в компьютерах изначально была вдохновлена тем, как работают биологические системы. Однако эти «нейроморфные» сети работают на аппаратном обеспечении, которое совсем не похоже на биологический мозг, что ограничивает производительность.
Теперь исследователи из Университета Осаки и Университета Хоккайдо планируют изменить это, создав нейроморфное «программное обеспечение». Работа посвященная новой технологии была опубликована в журнале Advanced Functional Materials.
Хотя модели нейронных сетей добились значительных успехов в таких приложениях, как генерация изображений и диагностика рака, они по-прежнему сильно отстают от общих вычислительных возможностей человеческого мозга. Отчасти это связано с тем, что они реализованы в программном обеспечении с использованием традиционного компьютерного оборудования, которое не оптимизировано для миллионов параметров и подключений, обычно необходимых для этих моделей.
Нейроморфное программное обеспечение, основанное на мемристивных устройствах, могло бы решить эту проблему. Мемристивное устройство — это устройство, сопротивление которого определяется его историей приложенного напряжения и тока. В этом подходе электрополимеризация используется для соединения электродов, погруженных в раствор прекурсора, с помощью проводов из проводящего полимера. Затем сопротивление каждого провода настраивается с помощью небольших импульсов напряжения, в результате чего получается мемристивное устройство.
— Мегуми Акаи-Касая, старший автор исследования.
Изменение трех значений проводимости G1, G2 и G3 между TE и тремя BE с помощью трехмерной полимерной проводки.
Исследователям удалось вырастить полимерные провода из обычной смеси полимеров под названием «PEDOT:PSS», которая обладает высокой проводимостью, прозрачностью, гибкостью и стабильностью. Трехмерную структуру верхнего и нижнего электродов сначала погружали в раствор прекурсора. Затем провода PEDOT:PSS были выращены между выбранными электродами путем приложения напряжения прямоугольной формы к этим электродам, имитируя формирование синаптических связей посредством направления аксонов в незрелом мозге.
После того, как провод был сформирован, его характеристики, особенно проводимость, контролировались с помощью небольших импульсов напряжения, приложенных к одному электроду, что изменяет электрические свойства пленки, окружающей провода.
Сфабрикованная сеть использовалась для демонстрации неконтролируемого обучения по Хеббу (т. е. когда синапсы, которые часто срабатывают вместе, со временем укрепляют свою общую связь). Более того, исследователи смогли точно контролировать значения проводимости проводов, чтобы сеть могла выполнять свои задачи.
Обучение на основе спайков, еще один подход к нейронным сетям, который более точно имитирует процессы биологических нейронных сетей, также был продемонстрирован путем управления диаметром и проводимостью проводов.
Затем, изготовив чип с большим количеством электродов и используя микрожидкостные каналы для подачи исходного раствора к каждому электроду, исследователи надеются построить более крупную и мощную сеть. В целом, подход, определенный в этом исследовании, является большим шагом к реализации нейроморфного программного обеспечения и сокращению разрыва между когнитивными способностями людей и компьютеров.
Теперь исследователи из Университета Осаки и Университета Хоккайдо планируют изменить это, создав нейроморфное «программное обеспечение». Работа посвященная новой технологии была опубликована в журнале Advanced Functional Materials.
Хотя модели нейронных сетей добились значительных успехов в таких приложениях, как генерация изображений и диагностика рака, они по-прежнему сильно отстают от общих вычислительных возможностей человеческого мозга. Отчасти это связано с тем, что они реализованы в программном обеспечении с использованием традиционного компьютерного оборудования, которое не оптимизировано для миллионов параметров и подключений, обычно необходимых для этих моделей.
Нейроморфное программное обеспечение, основанное на мемристивных устройствах, могло бы решить эту проблему. Мемристивное устройство — это устройство, сопротивление которого определяется его историей приложенного напряжения и тока. В этом подходе электрополимеризация используется для соединения электродов, погруженных в раствор прекурсора, с помощью проводов из проводящего полимера. Затем сопротивление каждого провода настраивается с помощью небольших импульсов напряжения, в результате чего получается мемристивное устройство.
Был продемонстрирован потенциал создания быстрых и энергоэффективных сетей с использованием одномерных и двумерных структур. Наша цель состояла в том, чтобы распространить этот подход на построение трехмерной сети
— Мегуми Акаи-Касая, старший автор исследования.
Изменение трех значений проводимости G1, G2 и G3 между TE и тремя BE с помощью трехмерной полимерной проводки.
Исследователям удалось вырастить полимерные провода из обычной смеси полимеров под названием «PEDOT:PSS», которая обладает высокой проводимостью, прозрачностью, гибкостью и стабильностью. Трехмерную структуру верхнего и нижнего электродов сначала погружали в раствор прекурсора. Затем провода PEDOT:PSS были выращены между выбранными электродами путем приложения напряжения прямоугольной формы к этим электродам, имитируя формирование синаптических связей посредством направления аксонов в незрелом мозге.
После того, как провод был сформирован, его характеристики, особенно проводимость, контролировались с помощью небольших импульсов напряжения, приложенных к одному электроду, что изменяет электрические свойства пленки, окружающей провода.
Сфабрикованная сеть использовалась для демонстрации неконтролируемого обучения по Хеббу (т. е. когда синапсы, которые часто срабатывают вместе, со временем укрепляют свою общую связь). Более того, исследователи смогли точно контролировать значения проводимости проводов, чтобы сеть могла выполнять свои задачи.
Обучение на основе спайков, еще один подход к нейронным сетям, который более точно имитирует процессы биологических нейронных сетей, также был продемонстрирован путем управления диаметром и проводимостью проводов.
Затем, изготовив чип с большим количеством электродов и используя микрожидкостные каналы для подачи исходного раствора к каждому электроду, исследователи надеются построить более крупную и мощную сеть. В целом, подход, определенный в этом исследовании, является большим шагом к реализации нейроморфного программного обеспечения и сокращению разрыва между когнитивными способностями людей и компьютеров.
- Алексей Павлов
- Naruki Hagiwara et al., Advanced Functional Materials
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
Забудьте всё, что вы знали о Луне
Новая теория предлагает в корне иное происхождение ночного светила....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Янтарь из недр Антарктиды раскрыл тайны тропических лесов
Застывшая смола возрастом 90 млн лет как часть исчезнувшей экосистемы....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Носи умные очки или увольняйся!
Amazon планирует заставить всех курьеров носить этот электронный прибор....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Чудо в перьях: Робот-голубь «упорхнёт» от радиолокации
Изобретение грозит новой гонкой вооружений....