
Исследователи выращивают мозг из биополимера для создания искусственных нейронных сетей
Разработка нейронных сетей для создания искусственного интеллекта в компьютерах изначально была вдохновлена тем, как работают биологические системы. Однако эти «нейроморфные» сети работают на аппаратном обеспечении, которое совсем не похоже на биологический мозг, что ограничивает производительность.
Теперь исследователи из Университета Осаки и Университета Хоккайдо планируют изменить это, создав нейроморфное «программное обеспечение». Работа посвященная новой технологии была опубликована в журнале Advanced Functional Materials.
Хотя модели нейронных сетей добились значительных успехов в таких приложениях, как генерация изображений и диагностика рака, они по-прежнему сильно отстают от общих вычислительных возможностей человеческого мозга. Отчасти это связано с тем, что они реализованы в программном обеспечении с использованием традиционного компьютерного оборудования, которое не оптимизировано для миллионов параметров и подключений, обычно необходимых для этих моделей.
Нейроморфное программное обеспечение, основанное на мемристивных устройствах, могло бы решить эту проблему. Мемристивное устройство — это устройство, сопротивление которого определяется его историей приложенного напряжения и тока. В этом подходе электрополимеризация используется для соединения электродов, погруженных в раствор прекурсора, с помощью проводов из проводящего полимера. Затем сопротивление каждого провода настраивается с помощью небольших импульсов напряжения, в результате чего получается мемристивное устройство.
— Мегуми Акаи-Касая, старший автор исследования.

Изменение трех значений проводимости G1, G2 и G3 между TE и тремя BE с помощью трехмерной полимерной проводки.
Исследователям удалось вырастить полимерные провода из обычной смеси полимеров под названием «PEDOT:PSS», которая обладает высокой проводимостью, прозрачностью, гибкостью и стабильностью. Трехмерную структуру верхнего и нижнего электродов сначала погружали в раствор прекурсора. Затем провода PEDOT:PSS были выращены между выбранными электродами путем приложения напряжения прямоугольной формы к этим электродам, имитируя формирование синаптических связей посредством направления аксонов в незрелом мозге.
После того, как провод был сформирован, его характеристики, особенно проводимость, контролировались с помощью небольших импульсов напряжения, приложенных к одному электроду, что изменяет электрические свойства пленки, окружающей провода.
Сфабрикованная сеть использовалась для демонстрации неконтролируемого обучения по Хеббу (т. е. когда синапсы, которые часто срабатывают вместе, со временем укрепляют свою общую связь). Более того, исследователи смогли точно контролировать значения проводимости проводов, чтобы сеть могла выполнять свои задачи.
Обучение на основе спайков, еще один подход к нейронным сетям, который более точно имитирует процессы биологических нейронных сетей, также был продемонстрирован путем управления диаметром и проводимостью проводов.
Затем, изготовив чип с большим количеством электродов и используя микрожидкостные каналы для подачи исходного раствора к каждому электроду, исследователи надеются построить более крупную и мощную сеть. В целом, подход, определенный в этом исследовании, является большим шагом к реализации нейроморфного программного обеспечения и сокращению разрыва между когнитивными способностями людей и компьютеров.
Теперь исследователи из Университета Осаки и Университета Хоккайдо планируют изменить это, создав нейроморфное «программное обеспечение». Работа посвященная новой технологии была опубликована в журнале Advanced Functional Materials.
Хотя модели нейронных сетей добились значительных успехов в таких приложениях, как генерация изображений и диагностика рака, они по-прежнему сильно отстают от общих вычислительных возможностей человеческого мозга. Отчасти это связано с тем, что они реализованы в программном обеспечении с использованием традиционного компьютерного оборудования, которое не оптимизировано для миллионов параметров и подключений, обычно необходимых для этих моделей.
Нейроморфное программное обеспечение, основанное на мемристивных устройствах, могло бы решить эту проблему. Мемристивное устройство — это устройство, сопротивление которого определяется его историей приложенного напряжения и тока. В этом подходе электрополимеризация используется для соединения электродов, погруженных в раствор прекурсора, с помощью проводов из проводящего полимера. Затем сопротивление каждого провода настраивается с помощью небольших импульсов напряжения, в результате чего получается мемристивное устройство.
Был продемонстрирован потенциал создания быстрых и энергоэффективных сетей с использованием одномерных и двумерных структур. Наша цель состояла в том, чтобы распространить этот подход на построение трехмерной сети
— Мегуми Акаи-Касая, старший автор исследования.

Изменение трех значений проводимости G1, G2 и G3 между TE и тремя BE с помощью трехмерной полимерной проводки.
Исследователям удалось вырастить полимерные провода из обычной смеси полимеров под названием «PEDOT:PSS», которая обладает высокой проводимостью, прозрачностью, гибкостью и стабильностью. Трехмерную структуру верхнего и нижнего электродов сначала погружали в раствор прекурсора. Затем провода PEDOT:PSS были выращены между выбранными электродами путем приложения напряжения прямоугольной формы к этим электродам, имитируя формирование синаптических связей посредством направления аксонов в незрелом мозге.
После того, как провод был сформирован, его характеристики, особенно проводимость, контролировались с помощью небольших импульсов напряжения, приложенных к одному электроду, что изменяет электрические свойства пленки, окружающей провода.
Сфабрикованная сеть использовалась для демонстрации неконтролируемого обучения по Хеббу (т. е. когда синапсы, которые часто срабатывают вместе, со временем укрепляют свою общую связь). Более того, исследователи смогли точно контролировать значения проводимости проводов, чтобы сеть могла выполнять свои задачи.
Обучение на основе спайков, еще один подход к нейронным сетям, который более точно имитирует процессы биологических нейронных сетей, также был продемонстрирован путем управления диаметром и проводимостью проводов.
Затем, изготовив чип с большим количеством электродов и используя микрожидкостные каналы для подачи исходного раствора к каждому электроду, исследователи надеются построить более крупную и мощную сеть. В целом, подход, определенный в этом исследовании, является большим шагом к реализации нейроморфного программного обеспечения и сокращению разрыва между когнитивными способностями людей и компьютеров.
- Алексей Павлов
- Naruki Hagiwara et al., Advanced Functional Materials
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Скрытые миллиарды: население Земли оказалось гораздо больше, чем считалось
Новые исследования бросают вызов официальным демографическим данным....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Похоже, что проблема космического мусора в скором времени будет решена раз и навсегда
Новая технология не только очистит космос, но и поможет спутникам работать втрое дольше....

Почему мы не помним себя младенцами? Новое исследование дало ответы
Возможно, помним, но «ларчик» заперт....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

iPhone, давай до свидания! Илон Маск презентовал инновационный смартфон PhoneX
Это устройство слишком прекрасно для нашей реальности....

Ученые рассказали и показали, как выглядит Антарктида без льда
Высокие горы, глубочайшие каньоны, 58 метров до Апокалипсиса и множество других тайн....

Самые массовые и дикие розыгрыши на 1 апреля в мировой истории
Это вам не просто «вся спина белая»....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

10 лет за 48 часов: ИИ полностью переиграл ученых в поисках секрета супербактерий
Однако эксперты предупреждают: нейросети не только ускоряют науку, они запросто могут столкнуть нас в пропасть....

Ученый рассказал, как использовались загадочные артефакты из гробницы Тутанхамона
Это было как в фильме «Мумия»: «Фараон должен воскреснуть!»...