Исследователи выращивают мозг из биополимера для создания искусственных нейронных сетей
Разработка нейронных сетей для создания искусственного интеллекта в компьютерах изначально была вдохновлена тем, как работают биологические системы. Однако эти «нейроморфные» сети работают на аппаратном обеспечении, которое совсем не похоже на биологический мозг, что ограничивает производительность.
Теперь исследователи из Университета Осаки и Университета Хоккайдо планируют изменить это, создав нейроморфное «программное обеспечение». Работа посвященная новой технологии была опубликована в журнале Advanced Functional Materials.
Хотя модели нейронных сетей добились значительных успехов в таких приложениях, как генерация изображений и диагностика рака, они по-прежнему сильно отстают от общих вычислительных возможностей человеческого мозга. Отчасти это связано с тем, что они реализованы в программном обеспечении с использованием традиционного компьютерного оборудования, которое не оптимизировано для миллионов параметров и подключений, обычно необходимых для этих моделей.
Нейроморфное программное обеспечение, основанное на мемристивных устройствах, могло бы решить эту проблему. Мемристивное устройство — это устройство, сопротивление которого определяется его историей приложенного напряжения и тока. В этом подходе электрополимеризация используется для соединения электродов, погруженных в раствор прекурсора, с помощью проводов из проводящего полимера. Затем сопротивление каждого провода настраивается с помощью небольших импульсов напряжения, в результате чего получается мемристивное устройство.
— Мегуми Акаи-Касая, старший автор исследования.

Изменение трех значений проводимости G1, G2 и G3 между TE и тремя BE с помощью трехмерной полимерной проводки.
Исследователям удалось вырастить полимерные провода из обычной смеси полимеров под названием «PEDOT:PSS», которая обладает высокой проводимостью, прозрачностью, гибкостью и стабильностью. Трехмерную структуру верхнего и нижнего электродов сначала погружали в раствор прекурсора. Затем провода PEDOT:PSS были выращены между выбранными электродами путем приложения напряжения прямоугольной формы к этим электродам, имитируя формирование синаптических связей посредством направления аксонов в незрелом мозге.
После того, как провод был сформирован, его характеристики, особенно проводимость, контролировались с помощью небольших импульсов напряжения, приложенных к одному электроду, что изменяет электрические свойства пленки, окружающей провода.
Сфабрикованная сеть использовалась для демонстрации неконтролируемого обучения по Хеббу (т. е. когда синапсы, которые часто срабатывают вместе, со временем укрепляют свою общую связь). Более того, исследователи смогли точно контролировать значения проводимости проводов, чтобы сеть могла выполнять свои задачи.
Обучение на основе спайков, еще один подход к нейронным сетям, который более точно имитирует процессы биологических нейронных сетей, также был продемонстрирован путем управления диаметром и проводимостью проводов.
Затем, изготовив чип с большим количеством электродов и используя микрожидкостные каналы для подачи исходного раствора к каждому электроду, исследователи надеются построить более крупную и мощную сеть. В целом, подход, определенный в этом исследовании, является большим шагом к реализации нейроморфного программного обеспечения и сокращению разрыва между когнитивными способностями людей и компьютеров.
Теперь исследователи из Университета Осаки и Университета Хоккайдо планируют изменить это, создав нейроморфное «программное обеспечение». Работа посвященная новой технологии была опубликована в журнале Advanced Functional Materials.
Хотя модели нейронных сетей добились значительных успехов в таких приложениях, как генерация изображений и диагностика рака, они по-прежнему сильно отстают от общих вычислительных возможностей человеческого мозга. Отчасти это связано с тем, что они реализованы в программном обеспечении с использованием традиционного компьютерного оборудования, которое не оптимизировано для миллионов параметров и подключений, обычно необходимых для этих моделей.
Нейроморфное программное обеспечение, основанное на мемристивных устройствах, могло бы решить эту проблему. Мемристивное устройство — это устройство, сопротивление которого определяется его историей приложенного напряжения и тока. В этом подходе электрополимеризация используется для соединения электродов, погруженных в раствор прекурсора, с помощью проводов из проводящего полимера. Затем сопротивление каждого провода настраивается с помощью небольших импульсов напряжения, в результате чего получается мемристивное устройство.
Был продемонстрирован потенциал создания быстрых и энергоэффективных сетей с использованием одномерных и двумерных структур. Наша цель состояла в том, чтобы распространить этот подход на построение трехмерной сети
— Мегуми Акаи-Касая, старший автор исследования.

Изменение трех значений проводимости G1, G2 и G3 между TE и тремя BE с помощью трехмерной полимерной проводки.
Исследователям удалось вырастить полимерные провода из обычной смеси полимеров под названием «PEDOT:PSS», которая обладает высокой проводимостью, прозрачностью, гибкостью и стабильностью. Трехмерную структуру верхнего и нижнего электродов сначала погружали в раствор прекурсора. Затем провода PEDOT:PSS были выращены между выбранными электродами путем приложения напряжения прямоугольной формы к этим электродам, имитируя формирование синаптических связей посредством направления аксонов в незрелом мозге.
После того, как провод был сформирован, его характеристики, особенно проводимость, контролировались с помощью небольших импульсов напряжения, приложенных к одному электроду, что изменяет электрические свойства пленки, окружающей провода.
Сфабрикованная сеть использовалась для демонстрации неконтролируемого обучения по Хеббу (т. е. когда синапсы, которые часто срабатывают вместе, со временем укрепляют свою общую связь). Более того, исследователи смогли точно контролировать значения проводимости проводов, чтобы сеть могла выполнять свои задачи.
Обучение на основе спайков, еще один подход к нейронным сетям, который более точно имитирует процессы биологических нейронных сетей, также был продемонстрирован путем управления диаметром и проводимостью проводов.
Затем, изготовив чип с большим количеством электродов и используя микрожидкостные каналы для подачи исходного раствора к каждому электроду, исследователи надеются построить более крупную и мощную сеть. В целом, подход, определенный в этом исследовании, является большим шагом к реализации нейроморфного программного обеспечения и сокращению разрыва между когнитивными способностями людей и компьютеров.
- Алексей Павлов
- Naruki Hagiwara et al., Advanced Functional Materials
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Математики сняли с человечества одно из самых страшных обвинений за всю историю
Новое исследование показало, что наши далекие предки не уничтожали неандертальцев. Все было совсем иначе…...
Спутники докладывают: Африка прямо на глазах… рвется на части
Эксперты рассказали, почему новый шестой океан рождается с поразительной скоростью...
Невероятно, но Исландия официально объявила, что начинает готовиться... к новому ледниковому периоду
Эксперты рассказали, что ждать России и почему отсидеться не получится...
В России найдена уникальная научная коллекция, которая полвека считалась пропавшей без следа
В этой истории совпало все: великий ученый, детективный сюжет и счастливый случай...
Археологические находки раскрыли новые тайны места, где, согласно Библии, произойдет последняя битва добра и зла
Древние артефакты подтвердили догадки ученых, почему Армагеддон стал главным символом Конца Света...
Это удивительно: в среднем полосе России стали массово появляться редкие птицы
Ученые объяснили, почему эти уникальные изменения в природе могут считаться… биологической революцией...
И снова здравствуйте: ученые РАН начали работу… над советским проектом переброса сибирских рек в Среднюю Азию
Зачем это вообще нужно? И почему сейчас это выгодно России?...
Обезглавленный фараон: почему эту историю о Тутанхамоне пытались навсегда скрыть от широкой публики?
Эксперты говорят: слишком мрачно, слишком шокирующе даже для подготовленных людей...
Как прорывной российский метод начнет новый алмазный бум в Якутии?
Эксперты говорят: даже «слепые зоны» теперь не помеха для поисков...
Саратовский «бутерброд» позволит смартфонам работать дольше… до 100 раз
Эксперты говорят: «Новая российская технология не использует электроны, а потому способна вывести индустрию из тупика»...
Ставки повышаются! Уже 30%! Именно на столько может вырасти угроза катастрофы астероида 2024 YR4
Астрофизики рассказали, почему удар по Луне очень опасен для нашей планеты?...