Вдохновляясь хоботом: учёные создали эластичную трубку с уникальным диапазоном движений
Инженеры из Университета Уэстлейк, Китай, создали синтетическую трубку из жидкокристаллических эластомеров с уникальным диапазоном движений. Статью о разработке в журнале Science Advances («Научные достижения») назвали «Биоинспирированные трубчатые мягкие приводы из искусственных спиральных мышц». Первое слово в названии означает, что команда инженеров вдохновлялась примером из живой природы.
Трубчатые мягкие приводы с возможностью управлять ими очень востребованы в научных и инженерных устройствах. Однако обычно они недостаточно сжимаются, а ещё для использования у них зачастую мало степеней свободы.
Исследователи выбрали для разработки трубчатых мягких приводов жидкокристаллические эластомеры (LCE) — этот тип материала пригоден для обратимых деформаций и им можно управлять. В общем, LCE подходят для компактных, программируемых устройств с широким потенциалом для инженеров.
В качестве примера послужил самый впечатляющий трубчатый мягкий привод в природе — хобот слона. Без костей и суставов он выполняет множество задач: дышать, трубить, пить, мыться, хватать и так далее.
Мышечные волокна слоновьего хобота многослойны и как бы намотаны вокруг длинной оси, образуя трубчатую структуру. Строение мышц позволяет слону всячески менять форму хобота: сжимать, вытягивать, изгибать, крутить им, причём сразу в двух режимах.
На основе мускулатуры хобота исследователи разработали платформу для намотки нитей под рассчитанными углами, чтобы создать волокнистые мягкие приводы с аналогом мышечной структуры. Затем создали концепт искусственного растения, способного выполнять три вида движений: фототропные, то есть ориентация на свет, фотофобные, то есть уклонение от света, и фотонастические, связанные со сменой освещённости.
Искусственное растение спроектировали так, что его части — стебли, ветви и листья — реагировали на свет специфически. Внизу стебель остался светофобным, то есть избегал света, но поддерживал изгиб верхних структур в сторону освещения. Когда интенсивность освещения превышает заданный порог, ветви и листья отворачиваются прочь благодаря встроенной петле обратной связи, которая обеспечивает эффективный механизм самозащиты.
Адаптивные и автономные трубчатые конструкции, реагирующие на излучения, могут послужить во многих сферах.
• сбор солнечной энергии;
• солнечные паруса для космических станций, зондов или спутников;
• саморегулирующиеся оптические устройства;
• терморегуляция в зданиях;
• в качестве «комнатного растения», которое не нуждается в поливе.
Трубчатые мягкие приводы с возможностью управлять ими очень востребованы в научных и инженерных устройствах. Однако обычно они недостаточно сжимаются, а ещё для использования у них зачастую мало степеней свободы.
Исследователи выбрали для разработки трубчатых мягких приводов жидкокристаллические эластомеры (LCE) — этот тип материала пригоден для обратимых деформаций и им можно управлять. В общем, LCE подходят для компактных, программируемых устройств с широким потенциалом для инженеров.
В качестве примера послужил самый впечатляющий трубчатый мягкий привод в природе — хобот слона. Без костей и суставов он выполняет множество задач: дышать, трубить, пить, мыться, хватать и так далее.
Мышечные волокна слоновьего хобота многослойны и как бы намотаны вокруг длинной оси, образуя трубчатую структуру. Строение мышц позволяет слону всячески менять форму хобота: сжимать, вытягивать, изгибать, крутить им, причём сразу в двух режимах.
На основе мускулатуры хобота исследователи разработали платформу для намотки нитей под рассчитанными углами, чтобы создать волокнистые мягкие приводы с аналогом мышечной структуры. Затем создали концепт искусственного растения, способного выполнять три вида движений: фототропные, то есть ориентация на свет, фотофобные, то есть уклонение от света, и фотонастические, связанные со сменой освещённости.
Искусственное растение спроектировали так, что его части — стебли, ветви и листья — реагировали на свет специфически. Внизу стебель остался светофобным, то есть избегал света, но поддерживал изгиб верхних структур в сторону освещения. Когда интенсивность освещения превышает заданный порог, ветви и листья отворачиваются прочь благодаря встроенной петле обратной связи, которая обеспечивает эффективный механизм самозащиты.
Адаптивные и автономные трубчатые конструкции, реагирующие на излучения, могут послужить во многих сферах.
Возможные области применения:
• сбор солнечной энергии;
• солнечные паруса для космических станций, зондов или спутников;
• саморегулирующиеся оптические устройства;
• терморегуляция в зданиях;
• в качестве «комнатного растения», которое не нуждается в поливе.
- Дмитрий Ладыгин
- youtu.be/4dgVikxzvEU
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Секрет 14-го моря России: куда оно пропало и почему о нем снова заговорили?
Эксперты напоминают: Кроме Печорского, у России есть и 15-е «забытое» море, и оно тоже возвращается на карты...
Главная тайна Черного моря разгадана: Ученые рассказали, почему там на дне очень прозрачная пресная вода
Чтобы найти ответ, исследователям пришлось заглянуть на 8 тысяч лет назад...
Золотой колокольчик из Эрмитажа: почему Владимир Путин запретил выставлять этот артефакт за границей?
Сколько сокровищ потеряла Россия в последнее время, пока не поняла, что договоры с Западом не стоят даже бумаги, на которой написаны?...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
3500-летние рисунки на камнях российского острова Вайгач грозят переписать древнюю историю Арктики
Ученые рассказали, кем были мореходы из забытой цивилизации Русского Севера...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...
Грядет научный прорыв: Зачем в последние годы ученые по всему миру создают очень странные компьютеры?
Новые аппараты… не просто живые: они стирают различия между ЭВМ и человеческим мозгом...
Ученые рассказали, какой фрукт подчинил себе весь Китай
Как продукт с очень специфическим запахом стал управлять дипломатией и экономикой Юго-Восточной Азии?...
20-летнее наблюдение со спутников «сломало климат»: Теперь ученым придется полностью менять все теории
Зато теперь понятно, почему в двух близких городах могут быть... разные времена года...
Она нам больше не праматерь! Почему легендарную Люси могут «изгнать» из числа наших предков?
Ведущие антропологи мира схлестнулись в настоящей войне. Кто же окажется победителем?...
Американский авиалайнер резко рухнул на 7000 метров: эксперты считают виновником сбоя космические лучи из глубин Галактики
В этот раз катастрофа не произошла, но под угрозой электроника самолетов, космических аппаратов и даже автомобилей. Почему так происходит?...
Забытые истории: где искать потерянные русские города?
Последний языческий город, почему Тмутаракань — головная боль археологов и что не так со Старой Рязанью...
Операция «Байконур»: как СССР дерзко и красиво долгие годы водил за нос весь Запад
С какого космодрома на самом деле стартовал Юрий Гагарин?...