Вдохновляясь хоботом: учёные создали эластичную трубку с уникальным диапазоном движений
Инженеры из Университета Уэстлейк, Китай, создали синтетическую трубку из жидкокристаллических эластомеров с уникальным диапазоном движений. Статью о разработке в журнале Science Advances («Научные достижения») назвали «Биоинспирированные трубчатые мягкие приводы из искусственных спиральных мышц». Первое слово в названии означает, что команда инженеров вдохновлялась примером из живой природы.
Трубчатые мягкие приводы с возможностью управлять ими очень востребованы в научных и инженерных устройствах. Однако обычно они недостаточно сжимаются, а ещё для использования у них зачастую мало степеней свободы.
Исследователи выбрали для разработки трубчатых мягких приводов жидкокристаллические эластомеры (LCE) — этот тип материала пригоден для обратимых деформаций и им можно управлять. В общем, LCE подходят для компактных, программируемых устройств с широким потенциалом для инженеров.
В качестве примера послужил самый впечатляющий трубчатый мягкий привод в природе — хобот слона. Без костей и суставов он выполняет множество задач: дышать, трубить, пить, мыться, хватать и так далее.
Мышечные волокна слоновьего хобота многослойны и как бы намотаны вокруг длинной оси, образуя трубчатую структуру. Строение мышц позволяет слону всячески менять форму хобота: сжимать, вытягивать, изгибать, крутить им, причём сразу в двух режимах.
На основе мускулатуры хобота исследователи разработали платформу для намотки нитей под рассчитанными углами, чтобы создать волокнистые мягкие приводы с аналогом мышечной структуры. Затем создали концепт искусственного растения, способного выполнять три вида движений: фототропные, то есть ориентация на свет, фотофобные, то есть уклонение от света, и фотонастические, связанные со сменой освещённости.
Искусственное растение спроектировали так, что его части — стебли, ветви и листья — реагировали на свет специфически. Внизу стебель остался светофобным, то есть избегал света, но поддерживал изгиб верхних структур в сторону освещения. Когда интенсивность освещения превышает заданный порог, ветви и листья отворачиваются прочь благодаря встроенной петле обратной связи, которая обеспечивает эффективный механизм самозащиты.
Адаптивные и автономные трубчатые конструкции, реагирующие на излучения, могут послужить во многих сферах.
• сбор солнечной энергии;
• солнечные паруса для космических станций, зондов или спутников;
• саморегулирующиеся оптические устройства;
• терморегуляция в зданиях;
• в качестве «комнатного растения», которое не нуждается в поливе.
Трубчатые мягкие приводы с возможностью управлять ими очень востребованы в научных и инженерных устройствах. Однако обычно они недостаточно сжимаются, а ещё для использования у них зачастую мало степеней свободы.
Исследователи выбрали для разработки трубчатых мягких приводов жидкокристаллические эластомеры (LCE) — этот тип материала пригоден для обратимых деформаций и им можно управлять. В общем, LCE подходят для компактных, программируемых устройств с широким потенциалом для инженеров.
В качестве примера послужил самый впечатляющий трубчатый мягкий привод в природе — хобот слона. Без костей и суставов он выполняет множество задач: дышать, трубить, пить, мыться, хватать и так далее.
Мышечные волокна слоновьего хобота многослойны и как бы намотаны вокруг длинной оси, образуя трубчатую структуру. Строение мышц позволяет слону всячески менять форму хобота: сжимать, вытягивать, изгибать, крутить им, причём сразу в двух режимах.
На основе мускулатуры хобота исследователи разработали платформу для намотки нитей под рассчитанными углами, чтобы создать волокнистые мягкие приводы с аналогом мышечной структуры. Затем создали концепт искусственного растения, способного выполнять три вида движений: фототропные, то есть ориентация на свет, фотофобные, то есть уклонение от света, и фотонастические, связанные со сменой освещённости.
Искусственное растение спроектировали так, что его части — стебли, ветви и листья — реагировали на свет специфически. Внизу стебель остался светофобным, то есть избегал света, но поддерживал изгиб верхних структур в сторону освещения. Когда интенсивность освещения превышает заданный порог, ветви и листья отворачиваются прочь благодаря встроенной петле обратной связи, которая обеспечивает эффективный механизм самозащиты.
Адаптивные и автономные трубчатые конструкции, реагирующие на излучения, могут послужить во многих сферах.
Возможные области применения:
• сбор солнечной энергии;
• солнечные паруса для космических станций, зондов или спутников;
• саморегулирующиеся оптические устройства;
• терморегуляция в зданиях;
• в качестве «комнатного растения», которое не нуждается в поливе.
- Дмитрий Ладыгин
- youtu.be/4dgVikxzvEU
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Загадочный взрыв над Москвой: зачем NASA срочно удалило все данные об объекте 2025 US6?
И почему эксперты говорят, что мы никогда не узнаем правды?...
Активность нечеловеческого разума вблизи ядерных объектов США, СССР и Великобритании впервые получила научные доказательства
Критики не смогли опровергнуть работу шведских ученых о странных искусственных аномалиях на орбите...
Египетская «Зона 51»: Почему власти полностью засекретили «четвертую пирамиду»?
С 60-х годов ХХ века на объект Завиет-эль-Эриан не попал ни один ученый. Что скрывают военные за колючей проволокой?...
Ученые наконец-то взломали астрономический код цивилизации майя
700 лет точных предсказаний, 145 солнечных затмений: гениальный способ из древности отлично работает до сих пор...
«Парящие» берлоги: Как треугольные дома помогут России удержать Арктику
Кто победит? Глобальное изменение климата или новые технологии?...
Нападение акул, считавшихся абсолютно безобидными, вызвало шок у морских биологов
Кто виноват в этой ужасной трагедии? И почему эксперты говорят, что это только начало?...
Российские ученые создали уникальный материал будущего: новый металл прочнее любой стали, но дешевле даже алюминия
Мир высоких технологий ждал этого открытия десятилетия. Наша страна получила реальный шанс стать лидером металлургии...
Ученые говорят: вся жизнь подчиняется одному секретному коду
Но почему это древнее ископаемое отказалось следовать ему?...
Затонувшие корабли с сокровищами у берегов Китая открывают поразительные факты о Великом морском шелковом пути
Да, это лонгрид! Но после его прочтения ваш взгляд на историю Китая изменится самым коренным образом...
Тающий лед Антарктиды прячет от нас глубинную «бомбу» замедленного действия
Неожиданный климатический парадокс: малая беда хранит человечество от большой. Но это ненадолго...
Эксперимент показал, что на самом деле творится под марсианскими дюнами каждую весну
Оказалось, что с наступлением тепла на Красной планете активизируются... ледяные «кроты»...
Ученые из Хьюстона рассказали, почему Земля и другие планеты умудрились не сгореть в недрах молодого Солнца
Как оказалось, Солнечную систему в буквальном смысле спас Юпитер, который решительно выступил против гравитационного диктата звезды...
1300 лет назад неизвестные грабители вскрыли гробницу знатного воина, но вообще не тронули сокровищ. Почему?
Венгерские археологи уверены, что разгадали этот мистический детектив. Но так ли это на самом деле?...