
Вдохновляясь хоботом: учёные создали эластичную трубку с уникальным диапазоном движений
Инженеры из Университета Уэстлейк, Китай, создали синтетическую трубку из жидкокристаллических эластомеров с уникальным диапазоном движений. Статью о разработке в журнале Science Advances («Научные достижения») назвали «Биоинспирированные трубчатые мягкие приводы из искусственных спиральных мышц». Первое слово в названии означает, что команда инженеров вдохновлялась примером из живой природы.
Трубчатые мягкие приводы с возможностью управлять ими очень востребованы в научных и инженерных устройствах. Однако обычно они недостаточно сжимаются, а ещё для использования у них зачастую мало степеней свободы.
Исследователи выбрали для разработки трубчатых мягких приводов жидкокристаллические эластомеры (LCE) — этот тип материала пригоден для обратимых деформаций и им можно управлять. В общем, LCE подходят для компактных, программируемых устройств с широким потенциалом для инженеров.
В качестве примера послужил самый впечатляющий трубчатый мягкий привод в природе — хобот слона. Без костей и суставов он выполняет множество задач: дышать, трубить, пить, мыться, хватать и так далее.
Мышечные волокна слоновьего хобота многослойны и как бы намотаны вокруг длинной оси, образуя трубчатую структуру. Строение мышц позволяет слону всячески менять форму хобота: сжимать, вытягивать, изгибать, крутить им, причём сразу в двух режимах.
На основе мускулатуры хобота исследователи разработали платформу для намотки нитей под рассчитанными углами, чтобы создать волокнистые мягкие приводы с аналогом мышечной структуры. Затем создали концепт искусственного растения, способного выполнять три вида движений: фототропные, то есть ориентация на свет, фотофобные, то есть уклонение от света, и фотонастические, связанные со сменой освещённости.
Искусственное растение спроектировали так, что его части — стебли, ветви и листья — реагировали на свет специфически. Внизу стебель остался светофобным, то есть избегал света, но поддерживал изгиб верхних структур в сторону освещения. Когда интенсивность освещения превышает заданный порог, ветви и листья отворачиваются прочь благодаря встроенной петле обратной связи, которая обеспечивает эффективный механизм самозащиты.
Адаптивные и автономные трубчатые конструкции, реагирующие на излучения, могут послужить во многих сферах.
• сбор солнечной энергии;
• солнечные паруса для космических станций, зондов или спутников;
• саморегулирующиеся оптические устройства;
• терморегуляция в зданиях;
• в качестве «комнатного растения», которое не нуждается в поливе.
Трубчатые мягкие приводы с возможностью управлять ими очень востребованы в научных и инженерных устройствах. Однако обычно они недостаточно сжимаются, а ещё для использования у них зачастую мало степеней свободы.
Исследователи выбрали для разработки трубчатых мягких приводов жидкокристаллические эластомеры (LCE) — этот тип материала пригоден для обратимых деформаций и им можно управлять. В общем, LCE подходят для компактных, программируемых устройств с широким потенциалом для инженеров.
В качестве примера послужил самый впечатляющий трубчатый мягкий привод в природе — хобот слона. Без костей и суставов он выполняет множество задач: дышать, трубить, пить, мыться, хватать и так далее.
Мышечные волокна слоновьего хобота многослойны и как бы намотаны вокруг длинной оси, образуя трубчатую структуру. Строение мышц позволяет слону всячески менять форму хобота: сжимать, вытягивать, изгибать, крутить им, причём сразу в двух режимах.
На основе мускулатуры хобота исследователи разработали платформу для намотки нитей под рассчитанными углами, чтобы создать волокнистые мягкие приводы с аналогом мышечной структуры. Затем создали концепт искусственного растения, способного выполнять три вида движений: фототропные, то есть ориентация на свет, фотофобные, то есть уклонение от света, и фотонастические, связанные со сменой освещённости.
Искусственное растение спроектировали так, что его части — стебли, ветви и листья — реагировали на свет специфически. Внизу стебель остался светофобным, то есть избегал света, но поддерживал изгиб верхних структур в сторону освещения. Когда интенсивность освещения превышает заданный порог, ветви и листья отворачиваются прочь благодаря встроенной петле обратной связи, которая обеспечивает эффективный механизм самозащиты.
Адаптивные и автономные трубчатые конструкции, реагирующие на излучения, могут послужить во многих сферах.
Возможные области применения:
• сбор солнечной энергии;
• солнечные паруса для космических станций, зондов или спутников;
• саморегулирующиеся оптические устройства;
• терморегуляция в зданиях;
• в качестве «комнатного растения», которое не нуждается в поливе.
- Дмитрий Ладыгин
- youtu.be/4dgVikxzvEU
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Прогноз-2025: Кто первым нажмет красную кнопку в Третьей мировой?
Эксперты говорят: ядерная война может начаться гораздо быстрее и внезапнее, чем считалось до этого....

Ученые поражены: у растений есть секретный второй набор корней глубоко под землей
Это не только сенсация в ботанике, это вообще переворот в науке....

Найдено идеальное место для жизни на Марсе
По словам ученых, оно похоже… на нашу Сибирь....

Тайна разгадана: стало известно, почему большинство кошек предпочитают спать строго на одном боку
Оказалось, что это древний защитный механизм, которому миллионы лет....

Уникальная находка в Нидерландах: археологи обнаружили римский лагерь далеко за пределами Империи
Как лидар и искусственный интеллект нашли объект-«невидимку» II века....

Эксперты обнаружили существ, переживших прямой удар астероида, который уничтожил динозавров
Почему конец света — это вовсе не повод, чтобы вымирать?...

Ученые хотят создать хранилище микробов, чтобы те… не вымерли
Звучит кошмарно, но на самом деле от этого зависит судьба всего человечества....