
Новый материал позволит создать квантовые компьютеры на оптической основе
Исследователи из Массачусетского технологического института пришли к выводу о том, что наночастицы новых солнечных фотоэлектрических материалов способны выпускать поток идентичных фотонов. Сейчас проведенное исследование является фундаментально важным для определения характеристик новейших свето-материалов, а уже в ближайшем будущем оно может привести ученых к продвинутым квантовым компьютерам и, возможно, устройствам квантовой телепортации. Результаты исследования опубликованы в статье журнала Nature Photonics 22 июня, авторами которой являются аспирант Массачусетского технологического института Александр Каплан, профессор химии Мунги Бавенди и еще шесть научных сотрудников.
Для большинства концепций квантовых вычислений основу квантовых устройств представляют собой кубиты, состоящие из ультрахолодных атомов или спинов отдельных электронов. Однако около двадцати лет назад несколько групп ученых предложили вместо физических объектов использовать свет. Данное решение обладает целым рядом преимуществ, главным из которых является возможность отказаться от дорогостоящего сложного оборудования и перейти к использованию обычных зеркал и оптических детекторов.
— Александр Каплан, глава исследовательской группы.
Процесс подготовки этих фотонов можно назвать наиважнейшим для всей технологии. Каждый новый фотон должен полностью соответствовать квантовым характеристикам предыдущего, чего добиться даже самыми продвинутыми технологиями не так уж просто. Но, как только идеальное соответствие фотонов будет достигнуто, вся наука квантовой оптики перейдет на уровень выше. Исчезнет необходимость в продвинутой оптике и сложном оборудовании, напротив, ведущая роль перейдёт к самому свету, к его новой форме.
Далее ученые дают полученным идентичным фотонам взаимодействовать друг с другом, а во время этого взаимодействия был замечен совершенно новый процесс. Так как все используемые фотоны абсолютно одинаковы во всех параметрах, невозможно было определить их по номерам или отследить путь каждого конкретного фотона. Благодаря этой особенности был описан ранее не обнаруженный способ взаимодействия частиц.
Но перед исследователями была поставлена еще одна задача: необходимо было найти источник света, способный на постоянной основе генерировать абсолютно идентичные фотоны по заданным условиям.
Найденный источник света представляет собой специально выстроенную форму наночастиц свинцово-галогенидного перовскита. Перовскиты уже давно начали использовать в светодиодах, солнечных батареях и лазерах, а сейчас тонкие пленки этого материала считаются фотоэлектрическими элементами следующего поколения. В отличие от других коллоидных полупроводниковых наночастиц, свинцово-галогенидные перовскиты обладают очень высокой скоростью криогенного излучения. Благодаря этому свойству, наночастицы перовскита способны излучать свет уникальным образом.
Следующей частью процесса является проверка идентичности полученных фотонов. Само тестирование заключается в обнаружении определённого вида интерференции между двумя фотонами, так называемой интерференции Хонга-Оу-Манделя. По словам Каплана, это тестирование очень часто встречается во время разработки квантовых технологий, а его применимость в данном исследовании доказывает необходимость использования именно этого источника света.
— Александр Каплан.
Вместо трудоёмкого процесса производства, наночастицы перовскита изготавливаются в специальном растворе и наносятся на стеклянную поверхность. Исследовательская группа смогла воссоздать такой тип поведения фотонов, ранее достигаемый только при очень строгих условиях проведения эксперимента.
Хотя, ввиду слабой оптимизации их применения, новые материалы еще нельзя назвать идеальными, масштабируемость их производства поразительна. Ученые уже способны встроить их в некоторые устройства и продолжать совершенствовать технологию на основе широкой базы практических знаний. Если получится интегрировать этот материал в различные отражающие системы и оптические резонаторы, то будут открыты новые свойства и возможности применения всей технологии в целом.
Почему нужны именно фотоны?
Для большинства концепций квантовых вычислений основу квантовых устройств представляют собой кубиты, состоящие из ультрахолодных атомов или спинов отдельных электронов. Однако около двадцати лет назад несколько групп ученых предложили вместо физических объектов использовать свет. Данное решение обладает целым рядом преимуществ, главным из которых является возможность отказаться от дорогостоящего сложного оборудования и перейти к использованию обычных зеркал и оптических детекторов.
Вы можете собрать квантовый компьютер, используя только «бытовую» линейную оптику и специально подготовленные кубитоподобные фотоны
— Александр Каплан, глава исследовательской группы.
Процесс подготовки этих фотонов можно назвать наиважнейшим для всей технологии. Каждый новый фотон должен полностью соответствовать квантовым характеристикам предыдущего, чего добиться даже самыми продвинутыми технологиями не так уж просто. Но, как только идеальное соответствие фотонов будет достигнуто, вся наука квантовой оптики перейдет на уровень выше. Исчезнет необходимость в продвинутой оптике и сложном оборудовании, напротив, ведущая роль перейдёт к самому свету, к его новой форме.
Далее ученые дают полученным идентичным фотонам взаимодействовать друг с другом, а во время этого взаимодействия был замечен совершенно новый процесс. Так как все используемые фотоны абсолютно одинаковы во всех параметрах, невозможно было определить их по номерам или отследить путь каждого конкретного фотона. Благодаря этой особенности был описан ранее не обнаруженный способ взаимодействия частиц.
Но перед исследователями была поставлена еще одна задача: необходимо было найти источник света, способный на постоянной основе генерировать абсолютно идентичные фотоны по заданным условиям.
Источник света
Найденный источник света представляет собой специально выстроенную форму наночастиц свинцово-галогенидного перовскита. Перовскиты уже давно начали использовать в светодиодах, солнечных батареях и лазерах, а сейчас тонкие пленки этого материала считаются фотоэлектрическими элементами следующего поколения. В отличие от других коллоидных полупроводниковых наночастиц, свинцово-галогенидные перовскиты обладают очень высокой скоростью криогенного излучения. Благодаря этому свойству, наночастицы перовскита способны излучать свет уникальным образом.
Следующей частью процесса является проверка идентичности полученных фотонов. Само тестирование заключается в обнаружении определённого вида интерференции между двумя фотонами, так называемой интерференции Хонга-Оу-Манделя. По словам Каплана, это тестирование очень часто встречается во время разработки квантовых технологий, а его применимость в данном исследовании доказывает необходимость использования именно этого источника света.
Причина, из-за которой использовать другие источники нельзя, заключается в процессе их получения. Они изготавливаются индивидуально, один за другим, атом за атомом. Поэтому их производство очень сложно масштабировать и тяжело воспроизводить на постоянной основе
— Александр Каплан.
Вместо трудоёмкого процесса производства, наночастицы перовскита изготавливаются в специальном растворе и наносятся на стеклянную поверхность. Исследовательская группа смогла воссоздать такой тип поведения фотонов, ранее достигаемый только при очень строгих условиях проведения эксперимента.
Хотя, ввиду слабой оптимизации их применения, новые материалы еще нельзя назвать идеальными, масштабируемость их производства поразительна. Ученые уже способны встроить их в некоторые устройства и продолжать совершенствовать технологию на основе широкой базы практических знаний. Если получится интегрировать этот материал в различные отражающие системы и оптические резонаторы, то будут открыты новые свойства и возможности применения всей технологии в целом.
- Алексей Павлов
- Массачусетский технологический институт.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

NASA объявило: Найдены самые убедительные доказательства существования жизни на Марсе
Ученые тем временем выясняют, как могли выглядеть древние жители Красной планеты...

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Разгадка феномена «копченых» мумий может переписать древнейшую историю человечества
Поразительно: этот погребальный обычай, возможно, используют уже 42 000 лет подряд!...

Не украли, а «присвоили»: историки выяснили, как и откуда семья Марко Поло раздобыла главный символ Венеции
Данные, полученные из «ДНК» льва святого Марка, помогли распутать детектив длиной в 700 лет...

К 2035 году сектор Газа должен стать… самым продвинутым регионом на планете под управлением ИИ
По словам экспертов, в дерзком эксперименте за 100 млрд долларов есть только один большой вопрос: Куда выселить местное население?...

Каждый год, как расписанию, на Марсе образуется странное облако
Долгое время ученые не могли разгадать эту аномалию, но теперь ответ наконец-то найден!...