
Как пчелы помогают предотвращать аварии на дорогах
Каждый год миллионы людей теряют жизнь или здоровье из-за столкновений на дорогах. Как сделать дорожное движение безопаснее? Как предотвратить трагедии, которые могут случиться в любой момент?
На эти вопросы пытаются ответить ученые со всего мира, используя разные методы и технологии. Один из таких методов — прогнозирование аварий на основе искусственного интеллекта (ИИ). Он может помочь анализировать большие объемы данных о дорожном движении, выявлять факторы риска и определять вероятность и последствия аварий.
Один из интересных примеров применения ИИ для прогнозирования аварий — метод, разработанный китайским ученым Чжичэнем Ли. Он сочетает в себе две идеи: алгоритм пчелиной колонии и нечеткую вейвлет-нейронную сеть.
Алгоритм пчелиной колонии — способ решения сложных задач, который подражает поведению пчел при поиске и сборе нектара. Представьте себе, что у вас есть группа пчел, которые должны найти самые сладкие цветы в округе. Как они это делают? Они делятся на три типа: рабочие, наблюдатели и разведчики. Рабочие пчелы летают по округе и пробуют разные цветы. Наблюдатели сидят в улье и ждут, пока рабочие вернутся. Разведчики летают случайным образом и ищут новые цветы.
Когда рабочая пчела находит хороший цветок, она возвращается в улей и воспроизводит своеобразный танец, который показывает другим пчелам направление и расстояние до цветка. Чем слаще нектар, тем интенсивнее танец. Наблюдатели смотрят на танцы и выбирают самые лучшие цветки. Они летят к ним и пробуют нектар. Если он им нравится, они возвращаются в улей и сообщают другим рабочим о качественном источнике. Если нет, они ищут другие цветки. Разведчики добавляют разнообразие в поиск, потому что они могут найти новые цветочные поляны, о которых еще не знают другие. Таким образом, пчелы постепенно находят самые сладкие цветы в округе.
Алгоритм пчелиной колонии работает по тому же принципу, но вместо цветов он ищет решения задачи. Например, если мы хотим найти минимальное значение какой-то функции, мы можем представить, что это значение — самый сладкий цветок, а функция — карта округи с разными цветами. Тогда алгоритм пчелиной колонии будет искать это значение, используя рабочих, наблюдателей и разведчиков. Рабочие будут пробовать разные значения функции и возвращаться с информацией о их качестве. Наблюдатели — выбирать лучшие значения и улучшать их. Разведчики станут добавлять новые случайные значения для расширения поиска.
Алгоритм хорош тем, что он может решать разные задачи, адаптируясь к их особенностям. Он также быстро сходится к оптимальному или близкому к нему решению. Однако у него есть и недостатки: он может застрять в локальном минимуме или максимуме функции, то есть в точке, которая лучше соседних, но хуже глобальной. Он также может потерять свою эффективность в конце поиска, когда все пчелы собираются вокруг одного решения.
Чтобы устранить эти недостатки, Чжичэн Ли внес в алгоритм пчелиной колонии некоторые изменения. Он добавил самоадаптивные мутационные операции, которые позволяют пчелам изменять свои решения в зависимости от того, насколько они близки к оптимальному. Он также добавил операторы выбора, скрещивания и мутации из генетического алгоритма, который тоже основан на имитации природных процессов. Эти операторы помогают пчелам обмениваться информацией и создавать новые комбинации решений.
Но что же делает алгоритм пчелиной колонии с решениями, которые он находит? Здесь на помощь приходит нечеткая вейвлет-нейронная сеть. Это специальный вид нейросети, которая имеет две особенности: использует нечеткую логику и вейвлеты. Нечеткая логика — способ работы с неопределенными или неточными данными. Например, если мы хотим описать температуру воздуха, мы можем использовать нечеткие термины, такие как «холодно», «тепло» или «жарко».
Эти термины не имеют четких границ, а переходят друг в друга постепенно. Нечеткая логика позволяет задавать степень принадлежности данных к тому или иному термину, используя числа от 0 до 1. Например, если температура воздуха 15 градусов, мы можем сказать, что она принадлежит к термину «холодно» на 0,3, к термину «тепло» на 0,7 и к термину «жарко» на 0. Таким образом, нечеткая логика помогает учитывать неопределенность и размытость в данных.
Вейвлеты — математические функции, которые позволяют разбивать данные на разные частотные диапазоны и анализировать их отдельно. Например, если мы хотим изучить звуковой сигнал, мы можем разделить его на высокие, средние и низкие частоты и посмотреть, как они меняются во времени. Вейвлеты имеют особую форму: они похожи на небольшие волны, которые быстро затухают к нулю по краям. Это делает их удобными для анализа локальных особенностей данных, таких как перепады, скачки или разрывы.
Нечеткая вейвлет-нейронная сеть использует нечеткую логику и вейвлеты для обработки данных о дорожном движении. Она принимает на вход данные о различных факторах, влияющих на аварии, таких как погода, дорожные условия, транспортный поток, нарушения правил и т. д. Она выдает на выходе прогноз смертности в авариях для каждого случая.
Но как связать алгоритм пчелиной колонии и нечеткую вейвлет-нейронную сеть? Здесь алгоритм пчелиной колонии играет роль оптимизатора параметров нечеткой вейвлет-нейронной сети. Каждый нейрон в сети имеет свои веса и пороги, которые определяют его работу. Эти параметры нужно подбирать так, чтобы сеть могла точно прогнозировать аварии. Алгоритм пчелиной колонии помогает найти наилучшие значения этих параметров, используя рабочих, наблюдателей и разведчиков. Он ищет минимальную ошибку прогноза среди всех возможных комбинаций параметров.
Таким образом, метод Чжичэна Ли сочетает в себе две мощные технологии: алгоритм пчелиной колонии и нечеткую вейвлет-нейронную сеть. Он позволяет точно прогнозировать аварии на дорогах и предотвращать их.
Компьютерные симуляции показали, что этот метод обладает высокой точностью и скоростью прогнозирования. Он также учитывает нелинейность и неопределенность данных о дорожном движении, снижает вычислительную сложность и улучшает качество решения.
На эти вопросы пытаются ответить ученые со всего мира, используя разные методы и технологии. Один из таких методов — прогнозирование аварий на основе искусственного интеллекта (ИИ). Он может помочь анализировать большие объемы данных о дорожном движении, выявлять факторы риска и определять вероятность и последствия аварий.
Один из интересных примеров применения ИИ для прогнозирования аварий — метод, разработанный китайским ученым Чжичэнем Ли. Он сочетает в себе две идеи: алгоритм пчелиной колонии и нечеткую вейвлет-нейронную сеть.
Что такое «пчелиный» алгоритм
Алгоритм пчелиной колонии — способ решения сложных задач, который подражает поведению пчел при поиске и сборе нектара. Представьте себе, что у вас есть группа пчел, которые должны найти самые сладкие цветы в округе. Как они это делают? Они делятся на три типа: рабочие, наблюдатели и разведчики. Рабочие пчелы летают по округе и пробуют разные цветы. Наблюдатели сидят в улье и ждут, пока рабочие вернутся. Разведчики летают случайным образом и ищут новые цветы.
Когда рабочая пчела находит хороший цветок, она возвращается в улей и воспроизводит своеобразный танец, который показывает другим пчелам направление и расстояние до цветка. Чем слаще нектар, тем интенсивнее танец. Наблюдатели смотрят на танцы и выбирают самые лучшие цветки. Они летят к ним и пробуют нектар. Если он им нравится, они возвращаются в улей и сообщают другим рабочим о качественном источнике. Если нет, они ищут другие цветки. Разведчики добавляют разнообразие в поиск, потому что они могут найти новые цветочные поляны, о которых еще не знают другие. Таким образом, пчелы постепенно находят самые сладкие цветы в округе.
Алгоритм пчелиной колонии работает по тому же принципу, но вместо цветов он ищет решения задачи. Например, если мы хотим найти минимальное значение какой-то функции, мы можем представить, что это значение — самый сладкий цветок, а функция — карта округи с разными цветами. Тогда алгоритм пчелиной колонии будет искать это значение, используя рабочих, наблюдателей и разведчиков. Рабочие будут пробовать разные значения функции и возвращаться с информацией о их качестве. Наблюдатели — выбирать лучшие значения и улучшать их. Разведчики станут добавлять новые случайные значения для расширения поиска.
Алгоритм хорош тем, что он может решать разные задачи, адаптируясь к их особенностям. Он также быстро сходится к оптимальному или близкому к нему решению. Однако у него есть и недостатки: он может застрять в локальном минимуме или максимуме функции, то есть в точке, которая лучше соседних, но хуже глобальной. Он также может потерять свою эффективность в конце поиска, когда все пчелы собираются вокруг одного решения.
Чтобы устранить эти недостатки, Чжичэн Ли внес в алгоритм пчелиной колонии некоторые изменения. Он добавил самоадаптивные мутационные операции, которые позволяют пчелам изменять свои решения в зависимости от того, насколько они близки к оптимальному. Он также добавил операторы выбора, скрещивания и мутации из генетического алгоритма, который тоже основан на имитации природных процессов. Эти операторы помогают пчелам обмениваться информацией и создавать новые комбинации решений.
Как нечеткие данные обеспечивают безопасность движения
Но что же делает алгоритм пчелиной колонии с решениями, которые он находит? Здесь на помощь приходит нечеткая вейвлет-нейронная сеть. Это специальный вид нейросети, которая имеет две особенности: использует нечеткую логику и вейвлеты. Нечеткая логика — способ работы с неопределенными или неточными данными. Например, если мы хотим описать температуру воздуха, мы можем использовать нечеткие термины, такие как «холодно», «тепло» или «жарко».
Эти термины не имеют четких границ, а переходят друг в друга постепенно. Нечеткая логика позволяет задавать степень принадлежности данных к тому или иному термину, используя числа от 0 до 1. Например, если температура воздуха 15 градусов, мы можем сказать, что она принадлежит к термину «холодно» на 0,3, к термину «тепло» на 0,7 и к термину «жарко» на 0. Таким образом, нечеткая логика помогает учитывать неопределенность и размытость в данных.
Вейвлеты — математические функции, которые позволяют разбивать данные на разные частотные диапазоны и анализировать их отдельно. Например, если мы хотим изучить звуковой сигнал, мы можем разделить его на высокие, средние и низкие частоты и посмотреть, как они меняются во времени. Вейвлеты имеют особую форму: они похожи на небольшие волны, которые быстро затухают к нулю по краям. Это делает их удобными для анализа локальных особенностей данных, таких как перепады, скачки или разрывы.
Нечеткая вейвлет-нейронная сеть использует нечеткую логику и вейвлеты для обработки данных о дорожном движении. Она принимает на вход данные о различных факторах, влияющих на аварии, таких как погода, дорожные условия, транспортный поток, нарушения правил и т. д. Она выдает на выходе прогноз смертности в авариях для каждого случая.
Но как связать алгоритм пчелиной колонии и нечеткую вейвлет-нейронную сеть? Здесь алгоритм пчелиной колонии играет роль оптимизатора параметров нечеткой вейвлет-нейронной сети. Каждый нейрон в сети имеет свои веса и пороги, которые определяют его работу. Эти параметры нужно подбирать так, чтобы сеть могла точно прогнозировать аварии. Алгоритм пчелиной колонии помогает найти наилучшие значения этих параметров, используя рабочих, наблюдателей и разведчиков. Он ищет минимальную ошибку прогноза среди всех возможных комбинаций параметров.
Таким образом, метод Чжичэна Ли сочетает в себе две мощные технологии: алгоритм пчелиной колонии и нечеткую вейвлет-нейронную сеть. Он позволяет точно прогнозировать аварии на дорогах и предотвращать их.
Компьютерные симуляции показали, что этот метод обладает высокой точностью и скоростью прогнозирования. Он также учитывает нелинейность и неопределенность данных о дорожном движении, снижает вычислительную сложность и улучшает качество решения.
- Евгения Бусина
- Bentley Motors
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

32 удивительных подарка за последние 20 лет: ученые пытаются понять, за что косатки «балуют» людей
Природная доброта? Любопытство? Желание выйти на контакт?...

Найдено идеальное место для жизни на Марсе
По словам ученых, оно похоже… на нашу Сибирь....

Уникальная находка в Нидерландах: археологи обнаружили римский лагерь далеко за пределами Империи
Как лидар и искусственный интеллект нашли объект-«невидимку» II века....

Тайна разгадана: стало известно, почему большинство кошек предпочитают спать строго на одном боку
Оказалось, что это древний защитный механизм, которому миллионы лет....

Эксперты обнаружили существ, переживших прямой удар астероида, который уничтожил динозавров
Почему конец света — это вовсе не повод, чтобы вымирать?...

«Вертолетная» конструкция да Винчи может сделать беспилотники тише, быстрее и даже дешевле
Ученые поражены, насколько разработка Леонардо опередила время....

Ученые хотят создать хранилище микробов, чтобы те… не вымерли
Звучит кошмарно, но на самом деле от этого зависит судьба всего человечества....