
Хвойные деревья дышат не так, как мы думали
Мы привыкли считать, что растения — источники кислорода, которые обеспечивают нас жизненно важным газом благодаря фотосинтезу. Однако недавнее исследование показало, что хвойные иглы ведут себя неожиданным образом: в начале весны, когда светло, но холодно, они поглощают кислород, а не выделяют его. Как такое возможно и зачем им это нужно?
Фотосинтез — процесс, при котором растения под действием света превращают углекислый газ и воду в углеводы и кислород. Этот процесс происходит в специальных органеллах клеток листьев — хлоропластах, которые содержат тилакоидные мембраны с двумя основными комплексами — фотосистемами I и II. Кислород выделяется при разделении воды на фотосистеме II.
Животные и грибы, в отличие от растений, не могут фотосинтезировать, поэтому они потребляют кислород во время дыхания, при котором углеводы окисляются до углекислого газа и воды. Растения тоже дышат, особенно ночью и в корнях, но днем листья и иглы являются настоящими «фабриками кислорода».
Однако ученые из Умео университета (Швеция) обнаружили, что хвойные иглы сосны и ели зимой поглощают кислород на свету. Это было неожиданным открытием, которое заставило исследователей задаться вопросом: как это возможно и зачем им это нужно? Результаты их работы были опубликованы в журнале Nature Communications.
— Татьяна Шутова, старший научный сотрудник Умео университета.
Оказалось, что прибор работал исправно, а иглы действительно поглощали кислород на свету. Чтобы выяснить причину этого явления, ученые использовали комбинацию сложных методов. Они обнаружили, что поглощение кислорода происходит вокруг фотосистемы I и связано с особым типом белков — флаводиороновыми белками.
Флаводиороновые белки используются водорослями и цианобактериями для защиты своего фотосинтетического аппарата от повреждения избыточным светом. Они могут принимать электроны от фотосистемы I и переносить их на кислород, образуя воду. Таким образом, они предотвращают образование реактивных форм кислорода, которые могут повредить клетку.
Цветущие растения потеряли эти белки в ходе эволюции, но хвойные сохранили их, и это исследование предполагает, что они также способствуют фотозащите у хвойных. В начале весны, когда светло, но холодно, фотосинтез может быть затруднен из-за низкой температуры и недостатка углекислого газа. В этом случае флаводиороновые белки могут помочь иглам избежать стресса и подготовиться к активному фотосинтезу в теплое время года.
В предыдущем исследовании, которое ученые опубликовали три года назад в том же журнале, они выявили другой механизм — своего рода кратчайший путь между фотосистемой II и I, который используют хвойные для защиты своего фотосинтетического аппарата.
— Стефан Янссон, профессор растительной клеточной и молекулярной биологии в Умео университете, который возглавлял проект.
Фотосинтез — процесс, при котором растения под действием света превращают углекислый газ и воду в углеводы и кислород. Этот процесс происходит в специальных органеллах клеток листьев — хлоропластах, которые содержат тилакоидные мембраны с двумя основными комплексами — фотосистемами I и II. Кислород выделяется при разделении воды на фотосистеме II.
Животные и грибы, в отличие от растений, не могут фотосинтезировать, поэтому они потребляют кислород во время дыхания, при котором углеводы окисляются до углекислого газа и воды. Растения тоже дышат, особенно ночью и в корнях, но днем листья и иглы являются настоящими «фабриками кислорода».
Однако ученые из Умео университета (Швеция) обнаружили, что хвойные иглы сосны и ели зимой поглощают кислород на свету. Это было неожиданным открытием, которое заставило исследователей задаться вопросом: как это возможно и зачем им это нужно? Результаты их работы были опубликованы в журнале Nature Communications.
Я подумала, что что-то не так с прибором и повторила измерения
— Татьяна Шутова, старший научный сотрудник Умео университета.
Оказалось, что прибор работал исправно, а иглы действительно поглощали кислород на свету. Чтобы выяснить причину этого явления, ученые использовали комбинацию сложных методов. Они обнаружили, что поглощение кислорода происходит вокруг фотосистемы I и связано с особым типом белков — флаводиороновыми белками.
Флаводиороновые белки используются водорослями и цианобактериями для защиты своего фотосинтетического аппарата от повреждения избыточным светом. Они могут принимать электроны от фотосистемы I и переносить их на кислород, образуя воду. Таким образом, они предотвращают образование реактивных форм кислорода, которые могут повредить клетку.
Цветущие растения потеряли эти белки в ходе эволюции, но хвойные сохранили их, и это исследование предполагает, что они также способствуют фотозащите у хвойных. В начале весны, когда светло, но холодно, фотосинтез может быть затруднен из-за низкой температуры и недостатка углекислого газа. В этом случае флаводиороновые белки могут помочь иглам избежать стресса и подготовиться к активному фотосинтезу в теплое время года.
В предыдущем исследовании, которое ученые опубликовали три года назад в том же журнале, они выявили другой механизм — своего рода кратчайший путь между фотосистемой II и I, который используют хвойные для защиты своего фотосинтетического аппарата.
В обоих случаях есть интересные параллели. Хвойные сохранили процесс, который присутствует у низших растений, но который цветущие растения потеряли или не используют в такой же степени. Хвойные, по-видимому, приняли стратегию «лучше перебдеть, чем недобдеть», которая может быть менее эффективной в оптимальных условиях, но делает их более конкурентоспособными в суровом климате
— Стефан Янссон, профессор растительной клеточной и молекулярной биологии в Умео университете, который возглавлял проект.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

Разгадка феномена «копченых» мумий может переписать древнейшую историю человечества
Поразительно: этот погребальный обычай, возможно, используют уже 42 000 лет подряд!...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Не украли, а «присвоили»: историки выяснили, как и откуда семья Марко Поло раздобыла главный символ Венеции
Данные, полученные из «ДНК» льва святого Марка, помогли распутать детектив длиной в 700 лет...

Каждый год, как расписанию, на Марсе образуется странное облако
Долгое время ученые не могли разгадать эту аномалию, но теперь ответ наконец-то найден!...

Камни, растущие из пола в мексиканской пещере, пролили свет на загадочное крушение империи майя
Оказалось, что 13 роковых лет климатического беспредела нанесли смертельный удар величайшей цивилизации Центральной Америки...