
Секреты ремонта ДНК: как клетки предотвращают мутации и старение
В каждой клетке нашего тела есть молекула ДНК, которая хранит в себе всю генетическую информацию о человеке. А знаете ли вы, что эта молекула постоянно подвергается разным повреждениям, которые могут привести к мутациям и раку? К счастью, у нас есть специальные механизмы для исправления таких дефектов. Но иногда они не справляются со своей задачей, и тогда начинаются проблемы. Новосибирские ученые изучили один из таких случаев и нашли способ помочь клетке восстановить свою ДНК.
ДНК — молекула, которая состоит из двух длинных цепочек, скрученных в виде двойной спирали. Каждая цепочка состоит из маленьких элементов — нуклеотидов, которые бывают четырех видов: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц). Нуклеотиды соединяются в пары: А с Т, Г с Ц, и образуют ступеньки спирали. Порядок нуклеотидов в цепочке определяет последовательность генов — участков ДНК, которые кодируют разные белки. Белки же отвечают за все жизненные процессы в клетке.
ДНК постоянно подвергается различным воздействиям, которые могут повредить ее структуру и нарушить работу генов. Например, ультрафиолетовое излучение от солнца или рентгеновские лучи могут вызвать образование химических связей между соседними нуклеотидами в одной цепочке. Это называется димеризацией пиримидинов (Т и Ц). Такие связи искажают форму ДНК и мешают ее копированию и чтению.
Еще одно из самых частых и опасных повреждений ДНК — это потеря одного из азотистых оснований (А, Г, Т или Ц) из цепочки ДНК. Тогда на его месте образуется пустое место — апурин-апиримидиновый сайт (АП-сайт). Это может произойти под действием химических веществ или свободных радикалов — реактивных частиц кислорода, которые образуются в клетке при дыхании. АП-сайты могут привести к мутациям и раку, так как они нарушают правильное соответствие нуклеотидов в парах.
Клетка не оставляет свою ДНК без защиты. У нее есть специальные механизмы для исправления повреждений ДНК, которые называются репарацией. Репарация — это процесс восстановления нормальной структуры и функции ДНК с помощью разных ферментов (белков-катализаторов). Существует несколько видов репарации, которые специализируются на разных типах повреждений.
Один из таких видов репарации — это базовая репарация, которая устраняет неправильные или потерянные азотистые основания в ДНК. Она состоит из трех этапов: распознавания повреждения, удаления поврежденного фрагмента и заполнения пробела правильным нуклеотидом. Например, для исправления АП-сайта участвует фермент АП-эндонуклеаза, который расщепляет цепочку ДНК по обе стороны от АП-сайта и вырезает его. Затем другой фермент — ДНК-полимераза — добавляет нужный нуклеотид в пробел, а еще один фермент — ДНК-лигаза — склеивает концы цепочки.
Но что происходит, если АП-сайт не успевает быть исправлен? Ученые из Института химической биологии и фундаментальной медицины (ИХБФМ) СО РАН обнаружили, что АП-сайты могут реагировать с другими молекулами в клетке и образовывать сложные соединения — сшивки с белками или пептидами (фрагментами белков). Такие сшивки еще больше мешают копированию и чтению ДНК, чем просто АП-сайты.
Дефекты в системе репарации ДНК-белковых сшивок вызывают тяжёлые наследственные заболевания, например, синдром Рюйс–Алфс, при котором ускоряется старение организма. Это редкое генетическое заболевание, при котором у человека присутствует лишняя X-хромосома. Это приводит к нарушению развития нервной системы, скелета, кожи и других органов. Люди с этим синдромом стареют быстрее, чем обычно, и имеют повышенный риск развития рака. Более того, сшивки белков с АП-сайтами происходят не только спонтанно, но и под действием некоторых противоопухолевых средств.
Это означает, что некоторые лекарства, которые должны уничтожать раковые клетки, могут наоборот усугублять ситуацию, вызывая дополнительные повреждения ДНК. Поэтому важно изучать механизмы репарации ДНК-белковых сшивок и разрабатывать новые способы лечения рака.
Ученые ИХБФМ нашли способ получать сшивки пептидов с АП-сайтом в ДНК и изучить их влияние на репликацию (процесс создания новых молекул ДНК) и мутагенез (процесс возникновения мутаций). Они обнаружили, что ферменты репликации не могут нормально копировать ДНК со сшивкой и делают ошибки, которые приводят к замене или выпадению одного нуклеотида (элемента ДНК).
Однако они также выяснили, что те же ферменты репарации, которые исправляют обычные АП-сайты, могут устранять и сшивки. Они расщепляют связь между пептидом и ДНК и освобождают АП-сайт для дальнейшего ремонта. Этот процесс происходит как у бактерий, так и у дрожжей, и у человека. Фермент человека показал более низкую активность, но она все равно была сравнима с его активностью на некоторых других повреждениях ДНК.
Результаты этого исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в международном журнале Nucleic Acids Research. Эта работа дает новые возможности для создания лекарств, которые могут повышать чувствительность раковых клеток к лечению, а также для предотвращения преждевременного старения организма.
Что такое ДНК и как она повреждается?
ДНК — молекула, которая состоит из двух длинных цепочек, скрученных в виде двойной спирали. Каждая цепочка состоит из маленьких элементов — нуклеотидов, которые бывают четырех видов: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц). Нуклеотиды соединяются в пары: А с Т, Г с Ц, и образуют ступеньки спирали. Порядок нуклеотидов в цепочке определяет последовательность генов — участков ДНК, которые кодируют разные белки. Белки же отвечают за все жизненные процессы в клетке.
ДНК постоянно подвергается различным воздействиям, которые могут повредить ее структуру и нарушить работу генов. Например, ультрафиолетовое излучение от солнца или рентгеновские лучи могут вызвать образование химических связей между соседними нуклеотидами в одной цепочке. Это называется димеризацией пиримидинов (Т и Ц). Такие связи искажают форму ДНК и мешают ее копированию и чтению.
Еще одно из самых частых и опасных повреждений ДНК — это потеря одного из азотистых оснований (А, Г, Т или Ц) из цепочки ДНК. Тогда на его месте образуется пустое место — апурин-апиримидиновый сайт (АП-сайт). Это может произойти под действием химических веществ или свободных радикалов — реактивных частиц кислорода, которые образуются в клетке при дыхании. АП-сайты могут привести к мутациям и раку, так как они нарушают правильное соответствие нуклеотидов в парах.
Как клетка ремонтирует ДНК?
Клетка не оставляет свою ДНК без защиты. У нее есть специальные механизмы для исправления повреждений ДНК, которые называются репарацией. Репарация — это процесс восстановления нормальной структуры и функции ДНК с помощью разных ферментов (белков-катализаторов). Существует несколько видов репарации, которые специализируются на разных типах повреждений.
Один из таких видов репарации — это базовая репарация, которая устраняет неправильные или потерянные азотистые основания в ДНК. Она состоит из трех этапов: распознавания повреждения, удаления поврежденного фрагмента и заполнения пробела правильным нуклеотидом. Например, для исправления АП-сайта участвует фермент АП-эндонуклеаза, который расщепляет цепочку ДНК по обе стороны от АП-сайта и вырезает его. Затем другой фермент — ДНК-полимераза — добавляет нужный нуклеотид в пробел, а еще один фермент — ДНК-лигаза — склеивает концы цепочки.
Но что происходит, если АП-сайт не успевает быть исправлен? Ученые из Института химической биологии и фундаментальной медицины (ИХБФМ) СО РАН обнаружили, что АП-сайты могут реагировать с другими молекулами в клетке и образовывать сложные соединения — сшивки с белками или пептидами (фрагментами белков). Такие сшивки еще больше мешают копированию и чтению ДНК, чем просто АП-сайты.
Дефекты в системе репарации ДНК-белковых сшивок вызывают тяжёлые наследственные заболевания, например, синдром Рюйс–Алфс, при котором ускоряется старение организма. Это редкое генетическое заболевание, при котором у человека присутствует лишняя X-хромосома. Это приводит к нарушению развития нервной системы, скелета, кожи и других органов. Люди с этим синдромом стареют быстрее, чем обычно, и имеют повышенный риск развития рака. Более того, сшивки белков с АП-сайтами происходят не только спонтанно, но и под действием некоторых противоопухолевых средств.
Это означает, что некоторые лекарства, которые должны уничтожать раковые клетки, могут наоборот усугублять ситуацию, вызывая дополнительные повреждения ДНК. Поэтому важно изучать механизмы репарации ДНК-белковых сшивок и разрабатывать новые способы лечения рака.
Ученые ИХБФМ нашли способ получать сшивки пептидов с АП-сайтом в ДНК и изучить их влияние на репликацию (процесс создания новых молекул ДНК) и мутагенез (процесс возникновения мутаций). Они обнаружили, что ферменты репликации не могут нормально копировать ДНК со сшивкой и делают ошибки, которые приводят к замене или выпадению одного нуклеотида (элемента ДНК).
Однако они также выяснили, что те же ферменты репарации, которые исправляют обычные АП-сайты, могут устранять и сшивки. Они расщепляют связь между пептидом и ДНК и освобождают АП-сайт для дальнейшего ремонта. Этот процесс происходит как у бактерий, так и у дрожжей, и у человека. Фермент человека показал более низкую активность, но она все равно была сравнима с его активностью на некоторых других повреждениях ДНК.
Результаты этого исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в международном журнале Nucleic Acids Research. Эта работа дает новые возможности для создания лекарств, которые могут повышать чувствительность раковых клеток к лечению, а также для предотвращения преждевременного старения организма.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Планшет, пролежавший в Темзе пять лет, помог раскрыть серию запутанных преступлений
Эксперты говорят: даже вода не смогла стереть цифровые следы....

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Похоже, что проблема космического мусора в скором времени будет решена раз и навсегда
Новая технология не только очистит космос, но и поможет спутникам работать втрое дольше....

Скрытые миллиарды: население Земли оказалось гораздо больше, чем считалось
Новые исследования бросают вызов официальным демографическим данным....

Почему мы не помним себя младенцами? Новое исследование дало ответы
Возможно, помним, но «ларчик» заперт....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

Астрофизики рассказали, почему Вселенная замедляется вопреки предсказаниям Эйнштейна
Если открытие DESI и ослабление темной энергии подтвердится, учебники придется переписать....

iPhone, давай до свидания! Илон Маск презентовал инновационный смартфон PhoneX
Это устройство слишком прекрасно для нашей реальности....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

Самые массовые и дикие розыгрыши на 1 апреля в мировой истории
Это вам не просто «вся спина белая»....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

10 лет за 48 часов: ИИ полностью переиграл ученых в поисках секрета супербактерий
Однако эксперты предупреждают: нейросети не только ускоряют науку, они запросто могут столкнуть нас в пропасть....