Секреты ремонта ДНК: как клетки предотвращают мутации и старение
В каждой клетке нашего тела есть молекула ДНК, которая хранит в себе всю генетическую информацию о человеке. А знаете ли вы, что эта молекула постоянно подвергается разным повреждениям, которые могут привести к мутациям и раку? К счастью, у нас есть специальные механизмы для исправления таких дефектов. Но иногда они не справляются со своей задачей, и тогда начинаются проблемы. Новосибирские ученые изучили один из таких случаев и нашли способ помочь клетке восстановить свою ДНК.
ДНК — молекула, которая состоит из двух длинных цепочек, скрученных в виде двойной спирали. Каждая цепочка состоит из маленьких элементов — нуклеотидов, которые бывают четырех видов: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц). Нуклеотиды соединяются в пары: А с Т, Г с Ц, и образуют ступеньки спирали. Порядок нуклеотидов в цепочке определяет последовательность генов — участков ДНК, которые кодируют разные белки. Белки же отвечают за все жизненные процессы в клетке.
ДНК постоянно подвергается различным воздействиям, которые могут повредить ее структуру и нарушить работу генов. Например, ультрафиолетовое излучение от солнца или рентгеновские лучи могут вызвать образование химических связей между соседними нуклеотидами в одной цепочке. Это называется димеризацией пиримидинов (Т и Ц). Такие связи искажают форму ДНК и мешают ее копированию и чтению.
Еще одно из самых частых и опасных повреждений ДНК — это потеря одного из азотистых оснований (А, Г, Т или Ц) из цепочки ДНК. Тогда на его месте образуется пустое место — апурин-апиримидиновый сайт (АП-сайт). Это может произойти под действием химических веществ или свободных радикалов — реактивных частиц кислорода, которые образуются в клетке при дыхании. АП-сайты могут привести к мутациям и раку, так как они нарушают правильное соответствие нуклеотидов в парах.
Клетка не оставляет свою ДНК без защиты. У нее есть специальные механизмы для исправления повреждений ДНК, которые называются репарацией. Репарация — это процесс восстановления нормальной структуры и функции ДНК с помощью разных ферментов (белков-катализаторов). Существует несколько видов репарации, которые специализируются на разных типах повреждений.
Один из таких видов репарации — это базовая репарация, которая устраняет неправильные или потерянные азотистые основания в ДНК. Она состоит из трех этапов: распознавания повреждения, удаления поврежденного фрагмента и заполнения пробела правильным нуклеотидом. Например, для исправления АП-сайта участвует фермент АП-эндонуклеаза, который расщепляет цепочку ДНК по обе стороны от АП-сайта и вырезает его. Затем другой фермент — ДНК-полимераза — добавляет нужный нуклеотид в пробел, а еще один фермент — ДНК-лигаза — склеивает концы цепочки.
Но что происходит, если АП-сайт не успевает быть исправлен? Ученые из Института химической биологии и фундаментальной медицины (ИХБФМ) СО РАН обнаружили, что АП-сайты могут реагировать с другими молекулами в клетке и образовывать сложные соединения — сшивки с белками или пептидами (фрагментами белков). Такие сшивки еще больше мешают копированию и чтению ДНК, чем просто АП-сайты.
Дефекты в системе репарации ДНК-белковых сшивок вызывают тяжёлые наследственные заболевания, например, синдром Рюйс–Алфс, при котором ускоряется старение организма. Это редкое генетическое заболевание, при котором у человека присутствует лишняя X-хромосома. Это приводит к нарушению развития нервной системы, скелета, кожи и других органов. Люди с этим синдромом стареют быстрее, чем обычно, и имеют повышенный риск развития рака. Более того, сшивки белков с АП-сайтами происходят не только спонтанно, но и под действием некоторых противоопухолевых средств.
Это означает, что некоторые лекарства, которые должны уничтожать раковые клетки, могут наоборот усугублять ситуацию, вызывая дополнительные повреждения ДНК. Поэтому важно изучать механизмы репарации ДНК-белковых сшивок и разрабатывать новые способы лечения рака.
Ученые ИХБФМ нашли способ получать сшивки пептидов с АП-сайтом в ДНК и изучить их влияние на репликацию (процесс создания новых молекул ДНК) и мутагенез (процесс возникновения мутаций). Они обнаружили, что ферменты репликации не могут нормально копировать ДНК со сшивкой и делают ошибки, которые приводят к замене или выпадению одного нуклеотида (элемента ДНК).
Однако они также выяснили, что те же ферменты репарации, которые исправляют обычные АП-сайты, могут устранять и сшивки. Они расщепляют связь между пептидом и ДНК и освобождают АП-сайт для дальнейшего ремонта. Этот процесс происходит как у бактерий, так и у дрожжей, и у человека. Фермент человека показал более низкую активность, но она все равно была сравнима с его активностью на некоторых других повреждениях ДНК.
Результаты этого исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в международном журнале Nucleic Acids Research. Эта работа дает новые возможности для создания лекарств, которые могут повышать чувствительность раковых клеток к лечению, а также для предотвращения преждевременного старения организма.
Что такое ДНК и как она повреждается?
ДНК — молекула, которая состоит из двух длинных цепочек, скрученных в виде двойной спирали. Каждая цепочка состоит из маленьких элементов — нуклеотидов, которые бывают четырех видов: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц). Нуклеотиды соединяются в пары: А с Т, Г с Ц, и образуют ступеньки спирали. Порядок нуклеотидов в цепочке определяет последовательность генов — участков ДНК, которые кодируют разные белки. Белки же отвечают за все жизненные процессы в клетке.
ДНК постоянно подвергается различным воздействиям, которые могут повредить ее структуру и нарушить работу генов. Например, ультрафиолетовое излучение от солнца или рентгеновские лучи могут вызвать образование химических связей между соседними нуклеотидами в одной цепочке. Это называется димеризацией пиримидинов (Т и Ц). Такие связи искажают форму ДНК и мешают ее копированию и чтению.
Еще одно из самых частых и опасных повреждений ДНК — это потеря одного из азотистых оснований (А, Г, Т или Ц) из цепочки ДНК. Тогда на его месте образуется пустое место — апурин-апиримидиновый сайт (АП-сайт). Это может произойти под действием химических веществ или свободных радикалов — реактивных частиц кислорода, которые образуются в клетке при дыхании. АП-сайты могут привести к мутациям и раку, так как они нарушают правильное соответствие нуклеотидов в парах.
Как клетка ремонтирует ДНК?
Клетка не оставляет свою ДНК без защиты. У нее есть специальные механизмы для исправления повреждений ДНК, которые называются репарацией. Репарация — это процесс восстановления нормальной структуры и функции ДНК с помощью разных ферментов (белков-катализаторов). Существует несколько видов репарации, которые специализируются на разных типах повреждений.
Один из таких видов репарации — это базовая репарация, которая устраняет неправильные или потерянные азотистые основания в ДНК. Она состоит из трех этапов: распознавания повреждения, удаления поврежденного фрагмента и заполнения пробела правильным нуклеотидом. Например, для исправления АП-сайта участвует фермент АП-эндонуклеаза, который расщепляет цепочку ДНК по обе стороны от АП-сайта и вырезает его. Затем другой фермент — ДНК-полимераза — добавляет нужный нуклеотид в пробел, а еще один фермент — ДНК-лигаза — склеивает концы цепочки.
Но что происходит, если АП-сайт не успевает быть исправлен? Ученые из Института химической биологии и фундаментальной медицины (ИХБФМ) СО РАН обнаружили, что АП-сайты могут реагировать с другими молекулами в клетке и образовывать сложные соединения — сшивки с белками или пептидами (фрагментами белков). Такие сшивки еще больше мешают копированию и чтению ДНК, чем просто АП-сайты.
Дефекты в системе репарации ДНК-белковых сшивок вызывают тяжёлые наследственные заболевания, например, синдром Рюйс–Алфс, при котором ускоряется старение организма. Это редкое генетическое заболевание, при котором у человека присутствует лишняя X-хромосома. Это приводит к нарушению развития нервной системы, скелета, кожи и других органов. Люди с этим синдромом стареют быстрее, чем обычно, и имеют повышенный риск развития рака. Более того, сшивки белков с АП-сайтами происходят не только спонтанно, но и под действием некоторых противоопухолевых средств.
Это означает, что некоторые лекарства, которые должны уничтожать раковые клетки, могут наоборот усугублять ситуацию, вызывая дополнительные повреждения ДНК. Поэтому важно изучать механизмы репарации ДНК-белковых сшивок и разрабатывать новые способы лечения рака.
Ученые ИХБФМ нашли способ получать сшивки пептидов с АП-сайтом в ДНК и изучить их влияние на репликацию (процесс создания новых молекул ДНК) и мутагенез (процесс возникновения мутаций). Они обнаружили, что ферменты репликации не могут нормально копировать ДНК со сшивкой и делают ошибки, которые приводят к замене или выпадению одного нуклеотида (элемента ДНК).
Однако они также выяснили, что те же ферменты репарации, которые исправляют обычные АП-сайты, могут устранять и сшивки. Они расщепляют связь между пептидом и ДНК и освобождают АП-сайт для дальнейшего ремонта. Этот процесс происходит как у бактерий, так и у дрожжей, и у человека. Фермент человека показал более низкую активность, но она все равно была сравнима с его активностью на некоторых других повреждениях ДНК.
Результаты этого исследования, поддержанного грантом Российского научного фонда (РНФ), опубликованы в международном журнале Nucleic Acids Research. Эта работа дает новые возможности для создания лекарств, которые могут повышать чувствительность раковых клеток к лечению, а также для предотвращения преждевременного старения организма.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Эти «красные монстры» вообще не должны существовать
Что узнали астрономы о трех невозможно огромных галактиках....
Ученые раскрыли тайну сигнала, после которого началось самое мощное извержение в истории
Разгадка оказалась потрясающей во всех смыслах....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Ещё один одинокий: в Балтийском море обнаружен дельфин, который может говорить только сам с собой
Совсем как старый вдовец, которого давно не навещали близкие....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Большой мозг — не значит самый умный
Последнее исследование собак показало парадоксальные результаты....