
Материал для электроники будущего: двумерный теллурид галлия создан в российской лаборатории
Чтобы увеличить мощность, скорость и эффективность полупроводниковых устройств, необходимо использовать новые материалы с уникальными свойствами. Примерами являются двумерные (2D) материалы — тончайшие кристаллы, состоящие из одного атомного слоя. Они могут быть очень прочными, гибкими, прозрачными и эффективно взаимодействовать со светом. Это делает их перспективными для различных приложений в электронике, оптике, сенсорике и других областях.
Одним из самых интересных 2D-материалов является двумерный теллурид галлия — соединение галлия и теллура с формулой GaTe. Он обладает высокой электропроводностью и оптической активностью, что делает его подходящим для создания фотодетекторов, солнечных батарей, дисплеев и других электронно-оптических приборов нового поколения. Кроме того, теллурид галлия имеет две структурные формы — гексагональную и моноклинную. Гексагональная форма является металлическим проводником, а моноклинная форма является полупроводником с большим запрещенным зазором. Это означает, что она может пропускать или блокировать электрический ток в зависимости от приложенного напряжения.

Однако получение двумерного теллурида галлия не так просто. Для того чтобы он мог быть интегрирован в существующую технологию производства чипов, необходимо выращивать его на кремниевой подложке — основе большинства полупроводниковых устройств. Но при этом возникает проблема: кристаллические решетки теллурида галлия и кремния не совпадают по размеру и форме, что приводит к образованию дефектов на стыке двух материалов. Эти дефекты снижают качество и эффективность 2D-кристалла и мешают его использованию в электронике.
Ученые из НИУ «МИЭТ» вместе с коллегами из Италии и Германии нашли способ решить эту проблему. Они предложили новую технологию получения двумерного теллурида галлия на кремниевой подложке, которая позволяет получить структурно совершенный 2D-кристалл без дефектов. Их метод заключается в следующем: сначала на подложке выращивается гексагональная фаза теллурида галлия, которая имеет более близкую к кремнию решетку, а затем за счет обжига она превращается в моноклинную фазу, которая обладает нужными свойствами. Таким образом, ученые смогли избежать непосредственного контакта моноклинной фазы с кремнием и минимизировать дефекты на границе раздела.
— старший научный сотрудник лаборатории электронной микроскопии и доцент института физики и прикладной математики НИУ «МИЭТ» Александр Приходько.
Двумерный теллурид галлия — материал, который может революционизировать современную электронику. Он имеет уникальные свойства, которые позволяют ему эффективно взаимодействовать с электричеством и светом. Например, он может вращать плоскость поляризации света, проходящего через него. Это означает, что он может изменять направление колебаний электрического поля световой волны. Это свойство называется оптической активностью и может быть использовано для создания оптических модуляторов, переключателей и датчиков.
Оптический модулятор — это устройство, которое может изменять интенсивность или фазу светового сигнала под воздействием электрического сигнала. Он может быть использован для передачи информации по оптическим волокнам или для управления лазерами. Оптический переключатель — это устройство, которое может направлять световой сигнал по разным каналам в зависимости от электрического сигнала. Он может быть использован для маршрутизации оптических сигналов в сетях или для коммутации оптических устройств. Оптический датчик — это устройство, которое может преобразовывать световой сигнал в электрический сигнал. Он может быть использован для измерения различных параметров, таких как температура, давление, скорость или концентрация химических веществ.
Двумерный теллурид галлия может быть использован для создания этих оптических устройств благодаря своей оптической активности. Он может изменять плоскость поляризации света под воздействием электрического поля, создаваемого на его поверхности. Таким образом, он может модулировать, переключать или детектировать световые сигналы. Кроме того, двумерный теллурид галлия имеет высокую электропроводность и большой запрещенный зазор. Это означает, что он может легко переходить от состояния проводника к состоянию изолятора под воздействием электрического напряжения. Это свойство называется полевым эффектом и может быть использовано для создания транзисторов — основных элементов полупроводниковых устройств.
Результаты исследования опубликованы в журнале npj 2D Materials and Applications. Авторы работы уверены, что их разработка открывает новые перспективы для использования двумерного теллурида галлия в передовой электронике и оптике.
Одним из самых интересных 2D-материалов является двумерный теллурид галлия — соединение галлия и теллура с формулой GaTe. Он обладает высокой электропроводностью и оптической активностью, что делает его подходящим для создания фотодетекторов, солнечных батарей, дисплеев и других электронно-оптических приборов нового поколения. Кроме того, теллурид галлия имеет две структурные формы — гексагональную и моноклинную. Гексагональная форма является металлическим проводником, а моноклинная форма является полупроводником с большим запрещенным зазором. Это означает, что она может пропускать или блокировать электрический ток в зависимости от приложенного напряжения.

Однако получение двумерного теллурида галлия не так просто. Для того чтобы он мог быть интегрирован в существующую технологию производства чипов, необходимо выращивать его на кремниевой подложке — основе большинства полупроводниковых устройств. Но при этом возникает проблема: кристаллические решетки теллурида галлия и кремния не совпадают по размеру и форме, что приводит к образованию дефектов на стыке двух материалов. Эти дефекты снижают качество и эффективность 2D-кристалла и мешают его использованию в электронике.
Ученые из НИУ «МИЭТ» вместе с коллегами из Италии и Германии нашли способ решить эту проблему. Они предложили новую технологию получения двумерного теллурида галлия на кремниевой подложке, которая позволяет получить структурно совершенный 2D-кристалл без дефектов. Их метод заключается в следующем: сначала на подложке выращивается гексагональная фаза теллурида галлия, которая имеет более близкую к кремнию решетку, а затем за счет обжига она превращается в моноклинную фазу, которая обладает нужными свойствами. Таким образом, ученые смогли избежать непосредственного контакта моноклинной фазы с кремнием и минимизировать дефекты на границе раздела.
Структурные исследования показали, что слой моноклинного теллурида галлия на кремнии обладает практически совершенной атомарной структурой. Граница раздела между материалом и подложкой резкая, какие-либо дислокации несоответствия, вызывающие снижение свойств, на ней отсутствуют
— старший научный сотрудник лаборатории электронной микроскопии и доцент института физики и прикладной математики НИУ «МИЭТ» Александр Приходько.
Как работает двумерный теллурид галлия и что он может дать электронике?
Двумерный теллурид галлия — материал, который может революционизировать современную электронику. Он имеет уникальные свойства, которые позволяют ему эффективно взаимодействовать с электричеством и светом. Например, он может вращать плоскость поляризации света, проходящего через него. Это означает, что он может изменять направление колебаний электрического поля световой волны. Это свойство называется оптической активностью и может быть использовано для создания оптических модуляторов, переключателей и датчиков.
Оптический модулятор — это устройство, которое может изменять интенсивность или фазу светового сигнала под воздействием электрического сигнала. Он может быть использован для передачи информации по оптическим волокнам или для управления лазерами. Оптический переключатель — это устройство, которое может направлять световой сигнал по разным каналам в зависимости от электрического сигнала. Он может быть использован для маршрутизации оптических сигналов в сетях или для коммутации оптических устройств. Оптический датчик — это устройство, которое может преобразовывать световой сигнал в электрический сигнал. Он может быть использован для измерения различных параметров, таких как температура, давление, скорость или концентрация химических веществ.
Двумерный теллурид галлия может быть использован для создания этих оптических устройств благодаря своей оптической активности. Он может изменять плоскость поляризации света под воздействием электрического поля, создаваемого на его поверхности. Таким образом, он может модулировать, переключать или детектировать световые сигналы. Кроме того, двумерный теллурид галлия имеет высокую электропроводность и большой запрещенный зазор. Это означает, что он может легко переходить от состояния проводника к состоянию изолятора под воздействием электрического напряжения. Это свойство называется полевым эффектом и может быть использовано для создания транзисторов — основных элементов полупроводниковых устройств.
Результаты исследования опубликованы в журнале npj 2D Materials and Applications. Авторы работы уверены, что их разработка открывает новые перспективы для использования двумерного теллурида галлия в передовой электронике и оптике.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Планшет, пролежавший в Темзе пять лет, помог раскрыть серию запутанных преступлений
Эксперты говорят: даже вода не смогла стереть цифровые следы....

«Инопланетяне» на Земле? Древние 8-метровые «грибы» оказались совершенно неизвестной формой жизни
Вот уже 180 лет подряд живые «башни» ставят в тупик всю науку....

«Шерстистый дьявол» обнаружен в пустыне, на границе Мексики и США
Ученые говорят: такой уникальной находки не было последние полвека....

Американские спецслужбы скрывают правду о самой древней из библейских реликвий?
Экстрасенс ЦРУ предупредил: Ковчег Завета убьет каждого, кто к нему прикоснется....

Похоже, что проблема космического мусора в скором времени будет решена раз и навсегда
Новая технология не только очистит космос, но и поможет спутникам работать втрое дольше....

Скрытые миллиарды: население Земли оказалось гораздо больше, чем считалось
Новые исследования бросают вызов официальным демографическим данным....

Почему мы не помним себя младенцами? Новое исследование дало ответы
Возможно, помним, но «ларчик» заперт....

Археологи ликуют: в Испании нашли рисунки, которые старше человечества!
200 000-летняя находка заставит пересмотреть учебники....

Астрофизики рассказали, почему Вселенная замедляется вопреки предсказаниям Эйнштейна
Если открытие DESI и ослабление темной энергии подтвердится, учебники придется переписать....

iPhone, давай до свидания! Илон Маск презентовал инновационный смартфон PhoneX
Это устройство слишком прекрасно для нашей реальности....

Ученые поражены: мыши, как спасатели, оживляют своих сородичей, попавших в беду
Открытие, от которого дрогнет даже самое черствое сердце....

Кислород устарел! Ученые нашли новый ключ к внеземной жизни
Гицеанические миры могут стать новой надеждой астрофизиков....

Самые массовые и дикие розыгрыши на 1 апреля в мировой истории
Это вам не просто «вся спина белая»....

На 100 000 лет раньше людей: ученые рассказали, кто устроил первые похороны на планете
Загадочные карлики Homo naledi, чей мозг был размером с апельсин, оказались не глупее нас с вами....

Секретная мутация гена: оказалось, ее имеют все обитатели Марианской впадины
Поразительное открытие китайских ученых может изменить всю теорию эволюции....

10 лет за 48 часов: ИИ полностью переиграл ученых в поисках секрета супербактерий
Однако эксперты предупреждают: нейросети не только ускоряют науку, они запросто могут столкнуть нас в пропасть....