Материал для электроники будущего: двумерный теллурид галлия создан в российской лаборатории
Чтобы увеличить мощность, скорость и эффективность полупроводниковых устройств, необходимо использовать новые материалы с уникальными свойствами. Примерами являются двумерные (2D) материалы — тончайшие кристаллы, состоящие из одного атомного слоя. Они могут быть очень прочными, гибкими, прозрачными и эффективно взаимодействовать со светом. Это делает их перспективными для различных приложений в электронике, оптике, сенсорике и других областях.
Одним из самых интересных 2D-материалов является двумерный теллурид галлия — соединение галлия и теллура с формулой GaTe. Он обладает высокой электропроводностью и оптической активностью, что делает его подходящим для создания фотодетекторов, солнечных батарей, дисплеев и других электронно-оптических приборов нового поколения. Кроме того, теллурид галлия имеет две структурные формы — гексагональную и моноклинную. Гексагональная форма является металлическим проводником, а моноклинная форма является полупроводником с большим запрещенным зазором. Это означает, что она может пропускать или блокировать электрический ток в зависимости от приложенного напряжения.
Однако получение двумерного теллурида галлия не так просто. Для того чтобы он мог быть интегрирован в существующую технологию производства чипов, необходимо выращивать его на кремниевой подложке — основе большинства полупроводниковых устройств. Но при этом возникает проблема: кристаллические решетки теллурида галлия и кремния не совпадают по размеру и форме, что приводит к образованию дефектов на стыке двух материалов. Эти дефекты снижают качество и эффективность 2D-кристалла и мешают его использованию в электронике.
Ученые из НИУ «МИЭТ» вместе с коллегами из Италии и Германии нашли способ решить эту проблему. Они предложили новую технологию получения двумерного теллурида галлия на кремниевой подложке, которая позволяет получить структурно совершенный 2D-кристалл без дефектов. Их метод заключается в следующем: сначала на подложке выращивается гексагональная фаза теллурида галлия, которая имеет более близкую к кремнию решетку, а затем за счет обжига она превращается в моноклинную фазу, которая обладает нужными свойствами. Таким образом, ученые смогли избежать непосредственного контакта моноклинной фазы с кремнием и минимизировать дефекты на границе раздела.
— старший научный сотрудник лаборатории электронной микроскопии и доцент института физики и прикладной математики НИУ «МИЭТ» Александр Приходько.
Двумерный теллурид галлия — материал, который может революционизировать современную электронику. Он имеет уникальные свойства, которые позволяют ему эффективно взаимодействовать с электричеством и светом. Например, он может вращать плоскость поляризации света, проходящего через него. Это означает, что он может изменять направление колебаний электрического поля световой волны. Это свойство называется оптической активностью и может быть использовано для создания оптических модуляторов, переключателей и датчиков.
Оптический модулятор — это устройство, которое может изменять интенсивность или фазу светового сигнала под воздействием электрического сигнала. Он может быть использован для передачи информации по оптическим волокнам или для управления лазерами. Оптический переключатель — это устройство, которое может направлять световой сигнал по разным каналам в зависимости от электрического сигнала. Он может быть использован для маршрутизации оптических сигналов в сетях или для коммутации оптических устройств. Оптический датчик — это устройство, которое может преобразовывать световой сигнал в электрический сигнал. Он может быть использован для измерения различных параметров, таких как температура, давление, скорость или концентрация химических веществ.
Двумерный теллурид галлия может быть использован для создания этих оптических устройств благодаря своей оптической активности. Он может изменять плоскость поляризации света под воздействием электрического поля, создаваемого на его поверхности. Таким образом, он может модулировать, переключать или детектировать световые сигналы. Кроме того, двумерный теллурид галлия имеет высокую электропроводность и большой запрещенный зазор. Это означает, что он может легко переходить от состояния проводника к состоянию изолятора под воздействием электрического напряжения. Это свойство называется полевым эффектом и может быть использовано для создания транзисторов — основных элементов полупроводниковых устройств.
Результаты исследования опубликованы в журнале npj 2D Materials and Applications. Авторы работы уверены, что их разработка открывает новые перспективы для использования двумерного теллурида галлия в передовой электронике и оптике.
Одним из самых интересных 2D-материалов является двумерный теллурид галлия — соединение галлия и теллура с формулой GaTe. Он обладает высокой электропроводностью и оптической активностью, что делает его подходящим для создания фотодетекторов, солнечных батарей, дисплеев и других электронно-оптических приборов нового поколения. Кроме того, теллурид галлия имеет две структурные формы — гексагональную и моноклинную. Гексагональная форма является металлическим проводником, а моноклинная форма является полупроводником с большим запрещенным зазором. Это означает, что она может пропускать или блокировать электрический ток в зависимости от приложенного напряжения.
Однако получение двумерного теллурида галлия не так просто. Для того чтобы он мог быть интегрирован в существующую технологию производства чипов, необходимо выращивать его на кремниевой подложке — основе большинства полупроводниковых устройств. Но при этом возникает проблема: кристаллические решетки теллурида галлия и кремния не совпадают по размеру и форме, что приводит к образованию дефектов на стыке двух материалов. Эти дефекты снижают качество и эффективность 2D-кристалла и мешают его использованию в электронике.
Ученые из НИУ «МИЭТ» вместе с коллегами из Италии и Германии нашли способ решить эту проблему. Они предложили новую технологию получения двумерного теллурида галлия на кремниевой подложке, которая позволяет получить структурно совершенный 2D-кристалл без дефектов. Их метод заключается в следующем: сначала на подложке выращивается гексагональная фаза теллурида галлия, которая имеет более близкую к кремнию решетку, а затем за счет обжига она превращается в моноклинную фазу, которая обладает нужными свойствами. Таким образом, ученые смогли избежать непосредственного контакта моноклинной фазы с кремнием и минимизировать дефекты на границе раздела.
Структурные исследования показали, что слой моноклинного теллурида галлия на кремнии обладает практически совершенной атомарной структурой. Граница раздела между материалом и подложкой резкая, какие-либо дислокации несоответствия, вызывающие снижение свойств, на ней отсутствуют
— старший научный сотрудник лаборатории электронной микроскопии и доцент института физики и прикладной математики НИУ «МИЭТ» Александр Приходько.
Как работает двумерный теллурид галлия и что он может дать электронике?
Двумерный теллурид галлия — материал, который может революционизировать современную электронику. Он имеет уникальные свойства, которые позволяют ему эффективно взаимодействовать с электричеством и светом. Например, он может вращать плоскость поляризации света, проходящего через него. Это означает, что он может изменять направление колебаний электрического поля световой волны. Это свойство называется оптической активностью и может быть использовано для создания оптических модуляторов, переключателей и датчиков.
Оптический модулятор — это устройство, которое может изменять интенсивность или фазу светового сигнала под воздействием электрического сигнала. Он может быть использован для передачи информации по оптическим волокнам или для управления лазерами. Оптический переключатель — это устройство, которое может направлять световой сигнал по разным каналам в зависимости от электрического сигнала. Он может быть использован для маршрутизации оптических сигналов в сетях или для коммутации оптических устройств. Оптический датчик — это устройство, которое может преобразовывать световой сигнал в электрический сигнал. Он может быть использован для измерения различных параметров, таких как температура, давление, скорость или концентрация химических веществ.
Двумерный теллурид галлия может быть использован для создания этих оптических устройств благодаря своей оптической активности. Он может изменять плоскость поляризации света под воздействием электрического поля, создаваемого на его поверхности. Таким образом, он может модулировать, переключать или детектировать световые сигналы. Кроме того, двумерный теллурид галлия имеет высокую электропроводность и большой запрещенный зазор. Это означает, что он может легко переходить от состояния проводника к состоянию изолятора под воздействием электрического напряжения. Это свойство называется полевым эффектом и может быть использовано для создания транзисторов — основных элементов полупроводниковых устройств.
Результаты исследования опубликованы в журнале npj 2D Materials and Applications. Авторы работы уверены, что их разработка открывает новые перспективы для использования двумерного теллурида галлия в передовой электронике и оптике.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Как на ладони: Обнаружен морской гигант, который виден из космоса
Мегакоралл у Соломоновых островов оказался самым крупным животным Земли....
Спасти планету сможет… африканский червь
В Кении найдено насекомое с удивительными способностями....
«Орешник», «Бук» и «Тополь»: искусный нейминг от российских военных конструкторов
Наука как сбить Запад с толку....
Главная тайна Седьмой планеты разгадана через 38 лет
Уран оказался не таким уж странным, как думали ученые....
80 000 лет жизни: какие тайны скрывает самое древнее и большое существо на планете?
Залог невероятного долголетия и удивительного выживания обнаружили учёные....
Раскрыт секрет идеального женского тела?
Оказывается, дело вовсе не в соотношении талии и бедер....
Саблезубый котёнок томился во льдах Якутии 35 тысяч лет
Благодаря находке стало известно, что сородичи пушистика обитали в столь холодных местах....
Ученые раскрыли тайну сигнала, после которого началось самое мощное извержение в истории
Разгадка оказалась потрясающей во всех смыслах....
Ученая вылечила свой рак вирусами собственного производства
Если человек хочет жить — медицина бессильна....
Эти «красные монстры» вообще не должны существовать
Что узнали астрономы о трех невозможно огромных галактиках....
Почти бессмертные существа помогут человечеству покорить глубокий космос
Ученым, наконец, удалось «взломать» код поразительной живучести тихоходок....
Разгадано учеными: почему города разрушают сердце и разум
Причины, которые нашли исследователи, вас удивят....
Ещё один одинокий: в Балтийском море обнаружен дельфин, который может говорить только сам с собой
Совсем как старый вдовец, которого давно не навещали близкие....
Турбулентность отменяется! А пилоты-люди вообще будут не нужны
Искусственный интеллект может в корне изменить авиацию....
Надеялись на Беса: древние египтянки при беременности хлебали галлюциногенные смеси
Думали, что божок с двусмысленным для нас именем убережёт....
Большой мозг — не значит самый умный
Последнее исследование собак показало парадоксальные результаты....