В Сколково научили нейросеть описывать рентгеновские снимки легких
Рентгеновское исследование — один из самых распространенных и доступных методов диагностики различных заболеваний органов дыхания. Однако его анализ требует высокой квалификации и опыта врачей-радиологов, которых не всегда хватает в медицинских учреждениях. К тому же, человеческий фактор может приводить к ошибкам и пропускам при интерпретации снимков.
Специалисты из Сколковского института науки и технологий (Сколтех) решили эту проблему с помощью искусственного интеллекта. Они разработали нейросеть, которая не только определяет наличие патологий на рентгеновских снимках легких, но и автоматически описывает их словами, используя простой и понятный язык.
— научный сотрудник Сколтеха Олег Рогов.
Нейросеть состоит из трех разных алгоритмов, которые работают вместе для анализа рентгеновских снимков легких и постановки диагноза. Первый алгоритм использует методы машинного зрения, чтобы обнаруживать на снимках различные патологии, такие как воспаления, опухоли, туберкулез и другие. Второй алгоритм сравнивает найденные патологии с базой данных, в которой содержатся снимки и диагнозы, подготовленные профессиональными врачами. Он выбирает те патологии, которые наиболее часто связаны с серьезными заболеваниями и требуют дополнительного внимания. Третий алгоритм применяет модели компьютерной лингвистики, чтобы сформулировать текстовое описание результатов анализа снимков. Он использует простые и понятные слова, чтобы объяснить, какие патологии были обнаружены, какова их вероятная причина и какие дальнейшие шаги необходимо предпринять. Кроме того, ученые разработали еще одну версию нейросети, в которой первый и второй алгоритмы были интегрированы в один модуль, что повысило скорость и точность обработки снимков.
Для обучения нейросетей исследователи отобрали 384 тыс. рентгеновских снимков и связанных с ними диагнозов. Ученые обработали эти изображения и отметили на них ключевые участки, на которые чаще всего обращают внимание врачи при анализе результатов обследования легких. Команда также подготовила текстовые описания снимков.
— Олег Рогов.
Тест системы показал, что обе ее вариации способны в 84-86% случаев выявлять ключевые патологии на снимках и подбирать диагноз, составленный простыми словами. Это позволит использовать их для ускорения диагностики болезней легких при рутинных клинических исследованиях.
Нейросеть также может помочь в обучении молодых специалистов и повышении квалификации опытных врачей. Кроме того, она может быть полезна для пациентов, которые хотят получить более подробную и понятную информацию о своем состоянии здоровья.
Ученые планируют дальше развивать свою разработку и адаптировать ее для других видов рентгеновских снимков, например, суставов или костей. Они также надеются на сотрудничество с медицинскими учреждениями и компаниями, заинтересованными во внедрении нейросети в практику.
Специалисты из Сколковского института науки и технологий (Сколтех) решили эту проблему с помощью искусственного интеллекта. Они разработали нейросеть, которая не только определяет наличие патологий на рентгеновских снимках легких, но и автоматически описывает их словами, используя простой и понятный язык.
Обычные модели искусственного интеллекта просто классифицируют снимки и данные, а наша нейросеть благодаря использованию современных моделей машинного зрения и моделей компьютерной лингвистики учится автоматически описывать рентгеновские снимки
— научный сотрудник Сколтеха Олег Рогов.
Нейросеть состоит из трех разных алгоритмов, которые работают вместе для анализа рентгеновских снимков легких и постановки диагноза. Первый алгоритм использует методы машинного зрения, чтобы обнаруживать на снимках различные патологии, такие как воспаления, опухоли, туберкулез и другие. Второй алгоритм сравнивает найденные патологии с базой данных, в которой содержатся снимки и диагнозы, подготовленные профессиональными врачами. Он выбирает те патологии, которые наиболее часто связаны с серьезными заболеваниями и требуют дополнительного внимания. Третий алгоритм применяет модели компьютерной лингвистики, чтобы сформулировать текстовое описание результатов анализа снимков. Он использует простые и понятные слова, чтобы объяснить, какие патологии были обнаружены, какова их вероятная причина и какие дальнейшие шаги необходимо предпринять. Кроме того, ученые разработали еще одну версию нейросети, в которой первый и второй алгоритмы были интегрированы в один модуль, что повысило скорость и точность обработки снимков.
Для обучения нейросетей исследователи отобрали 384 тыс. рентгеновских снимков и связанных с ними диагнозов. Ученые обработали эти изображения и отметили на них ключевые участки, на которые чаще всего обращают внимание врачи при анализе результатов обследования легких. Команда также подготовила текстовые описания снимков.
Мы специально составили свой радиологический словарь, чтобы повысить точность с точки зрения именно радиологических терминов, правил их использования в тексте. И, конечно, мы сформировали большую сводную базу рентгеновских снимков для использования в качестве обучающих данных
— Олег Рогов.
Тест системы показал, что обе ее вариации способны в 84-86% случаев выявлять ключевые патологии на снимках и подбирать диагноз, составленный простыми словами. Это позволит использовать их для ускорения диагностики болезней легких при рутинных клинических исследованиях.
Нейросеть также может помочь в обучении молодых специалистов и повышении квалификации опытных врачей. Кроме того, она может быть полезна для пациентов, которые хотят получить более подробную и понятную информацию о своем состоянии здоровья.
Ученые планируют дальше развивать свою разработку и адаптировать ее для других видов рентгеновских снимков, например, суставов или костей. Они также надеются на сотрудничество с медицинскими учреждениями и компаниями, заинтересованными во внедрении нейросети в практику.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Парадокс Великой Зеленой стены: Китай посадил 78 миллиардов новых деревьев, но климат стал только хуже. Как так вышло?
Ученые назвали причины, почему самый грандиозный экологический проект за всю историю в итоге обернулся головной болью для миллионов китайских граждан...
Марс отменяется: три причины, почему российские эксперты ставят крест на Красной планете
Почему пробирка с Марса опаснее любого астероида, как галактические лучи «взрывают» мозг и при чем тут Китай? Честный разбор рисков от Российской академии наук...
«Не повторяйте наших ошибок!» 100 лет борьбы с лесными пожарами обернулись катастрофой для США
Эксперты рассказали, почему, казалось бы, проверенная тактика только усугубила ситуацию с лесным огнем...
Главная тайна Черного моря разгадана: Ученые рассказали, почему там на дне очень прозрачная пресная вода
Чтобы найти ответ, исследователям пришлось заглянуть на 8 тысяч лет назад...
Мегамонстры с 7-го этажа: в древних океанах шла такая война хищников, где у современных косаток не было бы ни единого шанса
Ученые рассказали, куда исчезли «боги» мезозойских морей и почему сейчас их существование было бы невозможно...
ДНК 4000-летней овцы оказалось ключом к древней тайне, стоившей жизни миллионам
Поразительно, но археологи нашли штамм древней чумы, кошмаривший всю Евразию, в самом таинственном российском городе — Аркаиме. Почему же так получилось?...
Супертелескоп James Webb только запутал ученых, а планета-«близнец» Земли стала еще загадочнее
Эксперты рассказали, почему самый мощный телескоп в истории не смог разобраться с атмосферой TRAPPIST-1e. Аппарат не виноват. Но тогда кто?...
Мощнее леса в десятки раз: в ЮАР нашли «живые камни», которые выкачивают CO₂ с бешеной скоростью
Микробиалиты могли бы спасти Землю от потепления, но у этих «каменных насосов» есть один нюанс...
Новое исследование показало: если бы не этот «российский ген», древние люди вряд ли бы заселили Америку
Ученые рассказали, почему Алтай в ДНК — это главный секрет феноменального здоровья индейцев...
Грядет научный прорыв: Зачем в последние годы ученые по всему миру создают очень странные компьютеры?
Новые аппараты… не просто живые: они стирают различия между ЭВМ и человеческим мозгом...
20-летнее наблюдение со спутников «сломало климат»: Теперь ученым придется полностью менять все теории
Зато теперь понятно, почему в двух близких городах могут быть... разные времена года...
Она нам больше не праматерь! Почему легендарную Люси могут «изгнать» из числа наших предков?
Ведущие антропологи мира схлестнулись в настоящей войне. Кто же окажется победителем?...