В Сколково научили нейросеть описывать рентгеновские снимки легких
Рентгеновское исследование — один из самых распространенных и доступных методов диагностики различных заболеваний органов дыхания. Однако его анализ требует высокой квалификации и опыта врачей-радиологов, которых не всегда хватает в медицинских учреждениях. К тому же, человеческий фактор может приводить к ошибкам и пропускам при интерпретации снимков.
Специалисты из Сколковского института науки и технологий (Сколтех) решили эту проблему с помощью искусственного интеллекта. Они разработали нейросеть, которая не только определяет наличие патологий на рентгеновских снимках легких, но и автоматически описывает их словами, используя простой и понятный язык.
— научный сотрудник Сколтеха Олег Рогов.
Нейросеть состоит из трех разных алгоритмов, которые работают вместе для анализа рентгеновских снимков легких и постановки диагноза. Первый алгоритм использует методы машинного зрения, чтобы обнаруживать на снимках различные патологии, такие как воспаления, опухоли, туберкулез и другие. Второй алгоритм сравнивает найденные патологии с базой данных, в которой содержатся снимки и диагнозы, подготовленные профессиональными врачами. Он выбирает те патологии, которые наиболее часто связаны с серьезными заболеваниями и требуют дополнительного внимания. Третий алгоритм применяет модели компьютерной лингвистики, чтобы сформулировать текстовое описание результатов анализа снимков. Он использует простые и понятные слова, чтобы объяснить, какие патологии были обнаружены, какова их вероятная причина и какие дальнейшие шаги необходимо предпринять. Кроме того, ученые разработали еще одну версию нейросети, в которой первый и второй алгоритмы были интегрированы в один модуль, что повысило скорость и точность обработки снимков.
Для обучения нейросетей исследователи отобрали 384 тыс. рентгеновских снимков и связанных с ними диагнозов. Ученые обработали эти изображения и отметили на них ключевые участки, на которые чаще всего обращают внимание врачи при анализе результатов обследования легких. Команда также подготовила текстовые описания снимков.
— Олег Рогов.
Тест системы показал, что обе ее вариации способны в 84-86% случаев выявлять ключевые патологии на снимках и подбирать диагноз, составленный простыми словами. Это позволит использовать их для ускорения диагностики болезней легких при рутинных клинических исследованиях.
Нейросеть также может помочь в обучении молодых специалистов и повышении квалификации опытных врачей. Кроме того, она может быть полезна для пациентов, которые хотят получить более подробную и понятную информацию о своем состоянии здоровья.
Ученые планируют дальше развивать свою разработку и адаптировать ее для других видов рентгеновских снимков, например, суставов или костей. Они также надеются на сотрудничество с медицинскими учреждениями и компаниями, заинтересованными во внедрении нейросети в практику.
Специалисты из Сколковского института науки и технологий (Сколтех) решили эту проблему с помощью искусственного интеллекта. Они разработали нейросеть, которая не только определяет наличие патологий на рентгеновских снимках легких, но и автоматически описывает их словами, используя простой и понятный язык.
Обычные модели искусственного интеллекта просто классифицируют снимки и данные, а наша нейросеть благодаря использованию современных моделей машинного зрения и моделей компьютерной лингвистики учится автоматически описывать рентгеновские снимки
— научный сотрудник Сколтеха Олег Рогов.
Нейросеть состоит из трех разных алгоритмов, которые работают вместе для анализа рентгеновских снимков легких и постановки диагноза. Первый алгоритм использует методы машинного зрения, чтобы обнаруживать на снимках различные патологии, такие как воспаления, опухоли, туберкулез и другие. Второй алгоритм сравнивает найденные патологии с базой данных, в которой содержатся снимки и диагнозы, подготовленные профессиональными врачами. Он выбирает те патологии, которые наиболее часто связаны с серьезными заболеваниями и требуют дополнительного внимания. Третий алгоритм применяет модели компьютерной лингвистики, чтобы сформулировать текстовое описание результатов анализа снимков. Он использует простые и понятные слова, чтобы объяснить, какие патологии были обнаружены, какова их вероятная причина и какие дальнейшие шаги необходимо предпринять. Кроме того, ученые разработали еще одну версию нейросети, в которой первый и второй алгоритмы были интегрированы в один модуль, что повысило скорость и точность обработки снимков.
Для обучения нейросетей исследователи отобрали 384 тыс. рентгеновских снимков и связанных с ними диагнозов. Ученые обработали эти изображения и отметили на них ключевые участки, на которые чаще всего обращают внимание врачи при анализе результатов обследования легких. Команда также подготовила текстовые описания снимков.
Мы специально составили свой радиологический словарь, чтобы повысить точность с точки зрения именно радиологических терминов, правил их использования в тексте. И, конечно, мы сформировали большую сводную базу рентгеновских снимков для использования в качестве обучающих данных
— Олег Рогов.
Тест системы показал, что обе ее вариации способны в 84-86% случаев выявлять ключевые патологии на снимках и подбирать диагноз, составленный простыми словами. Это позволит использовать их для ускорения диагностики болезней легких при рутинных клинических исследованиях.
Нейросеть также может помочь в обучении молодых специалистов и повышении квалификации опытных врачей. Кроме того, она может быть полезна для пациентов, которые хотят получить более подробную и понятную информацию о своем состоянии здоровья.
Ученые планируют дальше развивать свою разработку и адаптировать ее для других видов рентгеновских снимков, например, суставов или костей. Они также надеются на сотрудничество с медицинскими учреждениями и компаниями, заинтересованными во внедрении нейросети в практику.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Пригвоздили серпом к земле, перерезали горло и…
Ученые рассказали, как провела последние мгновенья жизни таинственная «вампирша» из Польши....
Секретные китайские спутники «Тысячи парусов» — новый кошмар для астрономов
Наблюдать за звездами с Земли становится всё проблематичнее....
Раскрыта правда о «зелёной» Англии
На самом деле, Великобритании угрожает лососевое вымирание....
Почему викинги не сумели колонизировать Северную Америку?
1000-летняя тайна, похоже, все-таки разгадана....
Доказано на макаках: одиночество в старости сокращает шансы заболеть
Меньше других рядом — меньше угроз....
Лазеры раскрыли тайны затерянных городов на Великом шелковом пути
Стало известно, как города-близнецы процветали в суровом высокогорье....
Аномальное древнее кладбище найдено на юге Испании
В 5500-летнем некрополе оказалось много женщин и мало мужчин....
Специалисты NASA заявляют, что жизнь на Марсе может... скрываться
И они знают, где ее искать....
Коджи и лианглы: ученые раскрыли тайны самого древнего оружия
Выяснилось, что коренные австралийцы тоже любили смертельно подраться....
И снова наглый плагиат от компании Tesla?
Маск опять в суде. Теперь из-за «Бегущего по лезвию 2049»....
Ученые наконец-то подтвердили, что солнечный максимум уже наступил
Метеозависимым людям придётся несладко....
Судебный анализ ДНК может сделать невиновного преступником
Эксперты знают, но ничего не могут поделать....
Добыча криптовалюты: кто-то на этом зарабатывает, а кто-то теряет здоровье
Американские ученые вскрыли неожиданную проблему....
С помощью лидаров археологи нашли ещё более 6600 сооружений майя
Ещё предстоит обнаружить все крупные города древней цивилизации....
Гонки по вертикали: как долго Эверест будет самой высокой горой на планете?
Ученые, кажется, сумели разгадать эту загадку природы....
Инженеры изобрели мембрану для получения воды из воздуха
Высокопроизводительное устройство поможет в засушливых регионах....