
Телескоп FLUTE просто разольют в космосе
Команда проекта по созданию жидкостного телескопа FLUTE сложилась благодаря сотрудничеству НАСА с Технионом, Израильским технологическим институтом. Учёные придумали способ создания огромных круглых жидких зеркал на орбите. Телескопы большего размера собирают больше света и позволяют астрономам видеть удалённые объекты более детально.
На первой иллюстрации — концепция жидкостного телескопа FLUTE для большой космической обсерватории следующего поколения. Зеркало космического телескопа диаметром в половину футбольного поля развернут в космосе из жидких материалов. Форма оптики будет определяться естественной силой поверхностного натяжения тех жидкостей, которые составят огромную линзу.
Подобно ручной клади, полезные грузы, запускаемые в космос, должны быть в пределах допустимых размеров и веса для полёта. Апертура оптической космической обсерватории — это размер основного зеркала телескопа, той поверхности, которая собирает и фокусирует поступающий свет. У существующего космического телескопа Джеймса Уэбба апертура 6,5 метра, и для запуска в космос его в своё время пришлось сложить, как оригами, включая само зеркало, чтобы поместить в ракету.
Апертура космической обсерватории, предусмотренная исследователями FLUTE в рамках новой концепции, будет примерно 50 метров в диаметре.
Традиционная технология изготовления оптики для телескопов — это шлифовка и полировка стекла или металла для придания необходимой формы и гладкости линзам и зеркалам. Но таким путём экономически нецелесообразно делать телескопы с апертурой более 10 м в диаметре.
Новый эффективный технологический подход FLUTE, напротив, использует преимущества естественного поведения жидкостей в условиях микрогравитации. Все жидкости обладают упругой силой — поверхностным натяжением, которое придаёт каплям воды их форму и позволяет клопам-водомеркам скользить по поверхности пруда.
На Земле, если крошечные капли тумана или росы не больше 2 мм, то поверхностное натяжение преодолевает гравитацию, и они остаются идеально круглыми. Если капли больше, то они уплощаются под собственным весом. Но в космосе, где гравитация не влияет на жидкости, даже большие капли принимают максимально энергоэффективную форму шара.
Жидкости прилипают к поверхностям благодаря так называемой адгезии, и это физические явление — второй залог успеха для будущего телескопа FLUTE. Благодаря поверхностному натяжению в условиях микрогравитации достаточное количество жидкости, прилипнув изнутри к краям круглой рамы, растянется внутри и естественным образом примет форму сферического сечения, то есть диска.
Подобрав оптимальный объём жидкости, можно сделать так, чтобы её поверхность изгибалась вовнутрь, а не выпячивалась наружу. Если придать жидкости отражающие свойства, изогнутая внутрь поверхность станет зеркалом телескопа.
Проект FLUTE будет запускать жидкости в космос в качестве основы для оптики на орбите. Основное зеркало сформируют внутри огромной круглой рамы. Оно так и останется в жидком состоянии, с чрезвычайно гладкой поверхностью для сбора света.
Технологический подход FLUTE можно масштабировать до очень больших размеров. Технология, предположительно, позволит создавать телескопы с апертурами и в 10, и в 100 раз большими, чем у ныне действующих.
Уникальной особенностью жидкого зеркала является его способность к самовосстановлению. Например, если в него попадёт микрометеорит, оно быстро восстановится естественным образом.
Команда FLUTE провела маломасштабные эксперименты по формированию линз из жидкостей в различных средах. Сначала делали это в наземной лаборатории, затем в серии параболических полётов в условиях микрогравитации, а после и на борту МКС. Специализированные самолёты совершают параболические полёты, имитируя изгиб параболы, с шагом 45 градусов при движении вверх и вниз. Пассажиры испытывают 20–25 секунд микрогравитации. Типичный параболический полёт может длиться 2–3 часа с примерно 30 эпизодами невесомости.
Поиск компонентов для FLUTE, разработка концепции миссии и первоначального плана по развёртыванию на низкой околоземной орбите стали возможны за счёт гранта NASA Innovative Advanced Concepts («Инновационные передовые концепции», NIAC).
В декабре 2021-го коллектив FLUTE провёл параболические лётные испытания на борту G-Force One корпорации Zero Gravity. В модифицированном самолёте Boeing 727 возникали ненадолго периоды микрогравитации для оценки технологии. В ходе эксперимента проверяли формирование отдельных жидких линз из синтетических масел различной вязкости.
В апреле 2022-го астронавт миссии Axiom-1 (AX-1) Эйтан Стиббе провёл эксперимент с микрогравитацией на борту Международной космической станции (МКС). Бизнесмен и военный лётчик руками в перчатках в стеклянном ящике впрыскивал жидкие полимеры в круглые оправы для формирования линз. Затвердевшие на орбите полимеры возвратили на Землю для анализа. Также Стиббе провёл тогда дополнительный образовательный эксперимент: линзу сформировали из обычной воды.

В ноябре 2022-го команда FLUTE провела параболические лётные испытания на борту G-Force One. В серии экспериментов по созданию зеркал использовали ионные жидкости https://ru.wikipedia.org/wiki/Ионная_жидкость и сплав галлия. Галлий — нетоксичный металл с высокой отражающей способностью и очень низкой температурой плавления. Чистый галлий плавится примерно при 30 градусах по Цельсию.
На первой иллюстрации — концепция жидкостного телескопа FLUTE для большой космической обсерватории следующего поколения. Зеркало космического телескопа диаметром в половину футбольного поля развернут в космосе из жидких материалов. Форма оптики будет определяться естественной силой поверхностного натяжения тех жидкостей, которые составят огромную линзу.
Подобно ручной клади, полезные грузы, запускаемые в космос, должны быть в пределах допустимых размеров и веса для полёта. Апертура оптической космической обсерватории — это размер основного зеркала телескопа, той поверхности, которая собирает и фокусирует поступающий свет. У существующего космического телескопа Джеймса Уэбба апертура 6,5 метра, и для запуска в космос его в своё время пришлось сложить, как оригами, включая само зеркало, чтобы поместить в ракету.
Апертура космической обсерватории, предусмотренная исследователями FLUTE в рамках новой концепции, будет примерно 50 метров в диаметре.
Традиционная технология изготовления оптики для телескопов — это шлифовка и полировка стекла или металла для придания необходимой формы и гладкости линзам и зеркалам. Но таким путём экономически нецелесообразно делать телескопы с апертурой более 10 м в диаметре.
Новый эффективный технологический подход FLUTE, напротив, использует преимущества естественного поведения жидкостей в условиях микрогравитации. Все жидкости обладают упругой силой — поверхностным натяжением, которое придаёт каплям воды их форму и позволяет клопам-водомеркам скользить по поверхности пруда.
На Земле, если крошечные капли тумана или росы не больше 2 мм, то поверхностное натяжение преодолевает гравитацию, и они остаются идеально круглыми. Если капли больше, то они уплощаются под собственным весом. Но в космосе, где гравитация не влияет на жидкости, даже большие капли принимают максимально энергоэффективную форму шара.
Жидкости прилипают к поверхностям благодаря так называемой адгезии, и это физические явление — второй залог успеха для будущего телескопа FLUTE. Благодаря поверхностному натяжению в условиях микрогравитации достаточное количество жидкости, прилипнув изнутри к краям круглой рамы, растянется внутри и естественным образом примет форму сферического сечения, то есть диска.
Подобрав оптимальный объём жидкости, можно сделать так, чтобы её поверхность изгибалась вовнутрь, а не выпячивалась наружу. Если придать жидкости отражающие свойства, изогнутая внутрь поверхность станет зеркалом телескопа.
Проект FLUTE будет запускать жидкости в космос в качестве основы для оптики на орбите. Основное зеркало сформируют внутри огромной круглой рамы. Оно так и останется в жидком состоянии, с чрезвычайно гладкой поверхностью для сбора света.
Технологический подход FLUTE можно масштабировать до очень больших размеров. Технология, предположительно, позволит создавать телескопы с апертурами и в 10, и в 100 раз большими, чем у ныне действующих.
Уникальной особенностью жидкого зеркала является его способность к самовосстановлению. Например, если в него попадёт микрометеорит, оно быстро восстановится естественным образом.
Команда FLUTE провела маломасштабные эксперименты по формированию линз из жидкостей в различных средах. Сначала делали это в наземной лаборатории, затем в серии параболических полётов в условиях микрогравитации, а после и на борту МКС. Специализированные самолёты совершают параболические полёты, имитируя изгиб параболы, с шагом 45 градусов при движении вверх и вниз. Пассажиры испытывают 20–25 секунд микрогравитации. Типичный параболический полёт может длиться 2–3 часа с примерно 30 эпизодами невесомости.
Поиск компонентов для FLUTE, разработка концепции миссии и первоначального плана по развёртыванию на низкой околоземной орбите стали возможны за счёт гранта NASA Innovative Advanced Concepts («Инновационные передовые концепции», NIAC).
Основные этапы проекта
В декабре 2021-го коллектив FLUTE провёл параболические лётные испытания на борту G-Force One корпорации Zero Gravity. В модифицированном самолёте Boeing 727 возникали ненадолго периоды микрогравитации для оценки технологии. В ходе эксперимента проверяли формирование отдельных жидких линз из синтетических масел различной вязкости.
В апреле 2022-го астронавт миссии Axiom-1 (AX-1) Эйтан Стиббе провёл эксперимент с микрогравитацией на борту Международной космической станции (МКС). Бизнесмен и военный лётчик руками в перчатках в стеклянном ящике впрыскивал жидкие полимеры в круглые оправы для формирования линз. Затвердевшие на орбите полимеры возвратили на Землю для анализа. Также Стиббе провёл тогда дополнительный образовательный эксперимент: линзу сформировали из обычной воды.

В ноябре 2022-го команда FLUTE провела параболические лётные испытания на борту G-Force One. В серии экспериментов по созданию зеркал использовали ионные жидкости https://ru.wikipedia.org/wiki/Ионная_жидкость и сплав галлия. Галлий — нетоксичный металл с высокой отражающей способностью и очень низкой температурой плавления. Чистый галлий плавится примерно при 30 градусах по Цельсию.
- Дмитрий Ладыгин
- phys.org
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

32 удивительных подарка за последние 20 лет: ученые пытаются понять, за что косатки «балуют» людей
Природная доброта? Любопытство? Желание выйти на контакт?...

Найдено идеальное место для жизни на Марсе
По словам ученых, оно похоже… на нашу Сибирь....

Уникальная находка в Нидерландах: археологи обнаружили римский лагерь далеко за пределами Империи
Как лидар и искусственный интеллект нашли объект-«невидимку» II века....

Тайна разгадана: стало известно, почему большинство кошек предпочитают спать строго на одном боку
Оказалось, что это древний защитный механизм, которому миллионы лет....

Эксперты обнаружили существ, переживших прямой удар астероида, который уничтожил динозавров
Почему конец света — это вовсе не повод, чтобы вымирать?...

«Вертолетная» конструкция да Винчи может сделать беспилотники тише, быстрее и даже дешевле
Ученые поражены, насколько разработка Леонардо опередила время....

Ученые хотят создать хранилище микробов, чтобы те… не вымерли
Звучит кошмарно, но на самом деле от этого зависит судьба всего человечества....