
Дешевле, но не хуже: в России создали оптические датчики для анализа газов, которые конкурируют с зарубежными
Российские ученые разработали ключевые элементы для высокоточных, быстродействующих и компактных газоанализаторов — компоненты оптических датчиков.
Оптические газоанализаторы — это приборы, которые позволяют определить качественный и количественный состав смесей газов по их способности поглощать или излучать свет в инфракрасном диапазоне. Такие приборы находят широкое применение в разных сферах жизни и отраслях экономики: от мониторинга дыхания пациентов в медучреждениях до обнаружения утечек опасных газов на промышленных объектах. Ученые из Физико-технического института имени А. Ф. Иоффе РАН разработали высокоэффективные компоненты для оптических датчиков, которые соответствуют уровню мировых лидеров при гораздо более низкой стоимости.
Основой оптического датчика являются два элемента: светодиод, который генерирует излучение инфракрасного диапазона (длина волны 3–5 мкм) и фотоприемник, который регистрирует это излучение. Проходя через различные среды, излучение светодиода поглощается в разной степени, а фотоприемник фиксирует эти изменения. Поэтому, зная характерные спектральные линии поглощения ИК излучения такими веществами, как, например углекислый газ или этиловый спирт, можно зафиксировать в воздухе их присутствие и концентрацию.
—заведующий лабораторией инфракрасной оптоэлектроники ФТИ имени А. Ф. Иоффе Максим Ременный.
Для получения полупроводниковых материалов (гетероструктур) для таких датчиков ученые ФТИ имени А. Ф. Иоффе используют собственную технологию, которая позволяет создавать светодиоды с высокими значениями эффективности, а также высокочувствительные фотоприемники, способные фиксировать предельно низкие концентрации газов.
Светодиоды для кремниевой фотоники создаются на основе кремния с добавлением германия и олова. Эти элементы излучают свет в инфракрасном диапазоне, который используется для оптической связи и детектирования газов. Технология изготовления светодиодов была разработана учеными ФТИ имени А. Ф. Иоффе и позволяет получать высокую эффективность излучения.
Фотоприемники для анализа газов создаются на основе гетероструктур из соединений арсенида галлия и индия. Эти элементы обладают высокой чувствительностью и быстродействием, что позволяет фиксировать предельно низкие концентрации газов, таких как метан, углеводороды и углекислый газ. Технология создания фотоприемников также была разработана учеными ФТИ имени А. Ф. Иоффе и позволяет получать высокое качество детектирования.
— Максим Ременный.
Мелкосерийное производство датчиков будет запущено на базе индустриального партнера — ООО «ИоффеЛЕД» — малой инновационной компании, которая была создана при участии ФТИ имени А. Ф. Иоффе.
Газоанализаторы — не единственная область применения изобретений лаборатории. Ученые ФТИ имени А. Ф. Иоффе придумали новый способ делать светящиеся и светочувствительные приборы из особых материалов, которые называются твердотельными сплавами A2B4-A2B6. Эти материалы очень хорошо светятся и реагируют на свет, потому что у них есть большой зазор между энергиями электронов внутри них. Приборы, сделанные из этих материалов, хорошо работают при разных условиях, не ломаются и не теряют яркости. Они также потребляют мало энергии и могут быстро включаться и выключаться. Такие приборы можно использовать для разных целей, например, для подсветки экранов, передачи данных по свету, лечения болезней, получения энергии от солнца и других.
В настоящее время, сотрудники института разрабатывают датчики-газоанализаторы для систем пожаротушения нового российского пассажирского самолета МС-21, систем общей пожарной безопасности и контроля состава атмосферы для различных промышленных и медицинских применений.
Оптические газоанализаторы — это приборы, которые позволяют определить качественный и количественный состав смесей газов по их способности поглощать или излучать свет в инфракрасном диапазоне. Такие приборы находят широкое применение в разных сферах жизни и отраслях экономики: от мониторинга дыхания пациентов в медучреждениях до обнаружения утечек опасных газов на промышленных объектах. Ученые из Физико-технического института имени А. Ф. Иоффе РАН разработали высокоэффективные компоненты для оптических датчиков, которые соответствуют уровню мировых лидеров при гораздо более низкой стоимости.
Основой оптического датчика являются два элемента: светодиод, который генерирует излучение инфракрасного диапазона (длина волны 3–5 мкм) и фотоприемник, который регистрирует это излучение. Проходя через различные среды, излучение светодиода поглощается в разной степени, а фотоприемник фиксирует эти изменения. Поэтому, зная характерные спектральные линии поглощения ИК излучения такими веществами, как, например углекислый газ или этиловый спирт, можно зафиксировать в воздухе их присутствие и концентрацию.
Мы разработали компактные источники и приемники инфракрасного излучения, которые могут использоваться для создания оптических газоанализаторов-капнографов — устройств, измеряющих концентрацию углекислого газа у пациента во время искусственной вентиляции легких. В последние годы аппараты ИВЛ стали особо актуальными при терапии тяжелой формы COVID-19. Кроме того, наши компоненты являются ключевыми элементами датчиков в составе специальных рамок для экспресс-тестов на алкоголь у сотрудников промышленных предприятий
—заведующий лабораторией инфракрасной оптоэлектроники ФТИ имени А. Ф. Иоффе Максим Ременный.
Для получения полупроводниковых материалов (гетероструктур) для таких датчиков ученые ФТИ имени А. Ф. Иоффе используют собственную технологию, которая позволяет создавать светодиоды с высокими значениями эффективности, а также высокочувствительные фотоприемники, способные фиксировать предельно низкие концентрации газов.
Светодиоды для кремниевой фотоники создаются на основе кремния с добавлением германия и олова. Эти элементы излучают свет в инфракрасном диапазоне, который используется для оптической связи и детектирования газов. Технология изготовления светодиодов была разработана учеными ФТИ имени А. Ф. Иоффе и позволяет получать высокую эффективность излучения.
Фотоприемники для анализа газов создаются на основе гетероструктур из соединений арсенида галлия и индия. Эти элементы обладают высокой чувствительностью и быстродействием, что позволяет фиксировать предельно низкие концентрации газов, таких как метан, углеводороды и углекислый газ. Технология создания фотоприемников также была разработана учеными ФТИ имени А. Ф. Иоффе и позволяет получать высокое качество детектирования.
По своим характеристикам наши оптические компоненты для газоанализаторов соответствуют уровню мировых лидеров при гораздо более низкой стоимости. Если же говорить об отечественном рынке, то наша разработка по ряду параметров превосходит существующие российские аналоги
— Максим Ременный.
Мелкосерийное производство датчиков будет запущено на базе индустриального партнера — ООО «ИоффеЛЕД» — малой инновационной компании, которая была создана при участии ФТИ имени А. Ф. Иоффе.
Газоанализаторы — не единственная область применения изобретений лаборатории. Ученые ФТИ имени А. Ф. Иоффе придумали новый способ делать светящиеся и светочувствительные приборы из особых материалов, которые называются твердотельными сплавами A2B4-A2B6. Эти материалы очень хорошо светятся и реагируют на свет, потому что у них есть большой зазор между энергиями электронов внутри них. Приборы, сделанные из этих материалов, хорошо работают при разных условиях, не ломаются и не теряют яркости. Они также потребляют мало энергии и могут быстро включаться и выключаться. Такие приборы можно использовать для разных целей, например, для подсветки экранов, передачи данных по свету, лечения болезней, получения энергии от солнца и других.
В настоящее время, сотрудники института разрабатывают датчики-газоанализаторы для систем пожаротушения нового российского пассажирского самолета МС-21, систем общей пожарной безопасности и контроля состава атмосферы для различных промышленных и медицинских применений.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

16-тонный саркофаг, заполненный сокровищами, может подтвердить одну из самых таинственных и кровавых легенд древнего Китая
Какой секрет хранила эта гробница, что оставалась единственной нетронутой два тысячелетия?...

Ученый утверждает: у него есть доказательства, что мы живем в матрице
По словам Мелвина Вопсона, подсказки он нашел в ДНК, расширении Вселенной и фундаментальных законах физики...

Новая операция по объединению людей и животных может подарить… вечную жизнь
Медики признаются: уже сейчас можно сделать новое тело человека. Но один орган пока не поддается науке...

Выяснилось, что полное восстановление озонового слоя закончится глобальной катастрофой
Как так вышло, что в борьбе за экологию человечество сделало себе еще хуже?...

Разгадка феномена «копченых» мумий может переписать древнейшую историю человечества
Поразительно: этот погребальный обычай, возможно, используют уже 42 000 лет подряд!...

Оказывается, решение проблемы выбоин на дорогах существует уже почти 100 лет
Почему технология, забытая полвека назад, возвращается и становится очень популярной?...

Не украли, а «присвоили»: историки выяснили, как и откуда семья Марко Поло раздобыла главный символ Венеции
Данные, полученные из «ДНК» льва святого Марка, помогли распутать детектив длиной в 700 лет...

Каждый год, как расписанию, на Марсе образуется странное облако
Долгое время ученые не могли разгадать эту аномалию, но теперь ответ наконец-то найден!...

Камни, растущие из пола в мексиканской пещере, пролили свет на загадочное крушение империи майя
Оказалось, что 13 роковых лет климатического беспредела нанесли смертельный удар величайшей цивилизации Центральной Америки...

Почему открытие «темного кислорода» на 4000-метровой глубине вызвало яростные споры между учеными и добывающими компаниями?
И как это поможет нам найти жизнь на других планетах?...