
Как найти дорогу без спутников: новый квантовый датчик для навигации
Спутниковая навигация — удобный и точный способ определить свое местоположение на Земле. Но что делать, если сигналы спутников недоступны или подвержены помехам? Ученые из Имперского колледжа Лондона разработали прототип квантового датчика, который может работать без спутников и обеспечить высокую точность навигации в любых условиях.
Спутниковая навигация основана на глобальной системе позиционирования (GPS), которая использует сигналы от спутников, вращающихся вокруг Земли. Эти сигналы позволяют определить расстояние до спутников и вычислить координаты на поверхности планеты. Однако этот метод имеет свои ограничения. Спутниковые сигналы могут быть заблокированы высокими зданиями, горами или деревьями. Они также могут быть искажены атмосферой, солнечной активностью или искусственными помехами. Кроме того, спутниковая навигация зависит от работы и обслуживания спутников, которые могут выходить из строя или терять связь.
Альтернативой спутниковой навигации является автономная навигация, которая опирается на измерение скорости и ускорения объекта с помощью акселерометров и гироскопов. Эти приборы позволяют рассчитать перемещение объекта относительно начальной точки без внешних эталонов. Однако такие приборы также имеют свои недостатки. Они склонны к дрейфу, то есть постепенному увеличению ошибки измерения со временем. Поэтому они требуют регулярной калибровки по данным со спутника или другого источника.
Для решения этих проблем ученые разрабатывают новый тип акселерометра на основе квантовой физики. Квантовый акселерометр использует ультрахолодные атомы для проведения точных измерений ускорения. При охлаждении до сверхнизких температур атомы проявляют свою квантовую природу, то есть ведут себя как волны, а не как частицы. Это позволяет использовать лазерные импульсы для создания оптической линейки, по которой можно измерять перемещение атомов.
Квантовый акселерометр имеет ряд преимуществ перед обычными акселерометрами. Он не подвержен дрейфу, так как не зависит от механических или электрических элементов, которые могут изнашиваться или деформироваться. Он также не требует вакуумной системы для поддержания ультрахолодных атомов, так как использует специальную технологию лазерного охлаждения и захвата атомов. Кроме того, он может работать в широком диапазоне температур и вибраций.
Ученые из Имперского колледжа Лондона представили прототип квантового акселерометра в 2018 году. С тех пор они совершенствовали его до такой степени, что его можно было испытать в реальных условиях. В мае 2021 года они установили квантовый акселерометр на борту нового исследовательского корабля Королевского флота XV Patrick Blackett и провели серию экспериментов в Лондоне.
— профессор Питер Хейнс, директор Центра квантовой инженерии, науки и технологий (QuEST) в Имперском колледже Лондона.
Квантовая навигация может иметь множество применений в различных областях, таких как геодезия, геология, археология, оборона и безопасность. Она может помочь обнаруживать подземные структуры и объекты разного размера и состава, от природных до искусственных. Она также может повысить устойчивость к помехам и атакам на спутниковую навигацию.
Спутниковая навигация основана на глобальной системе позиционирования (GPS), которая использует сигналы от спутников, вращающихся вокруг Земли. Эти сигналы позволяют определить расстояние до спутников и вычислить координаты на поверхности планеты. Однако этот метод имеет свои ограничения. Спутниковые сигналы могут быть заблокированы высокими зданиями, горами или деревьями. Они также могут быть искажены атмосферой, солнечной активностью или искусственными помехами. Кроме того, спутниковая навигация зависит от работы и обслуживания спутников, которые могут выходить из строя или терять связь.
Альтернативой спутниковой навигации является автономная навигация, которая опирается на измерение скорости и ускорения объекта с помощью акселерометров и гироскопов. Эти приборы позволяют рассчитать перемещение объекта относительно начальной точки без внешних эталонов. Однако такие приборы также имеют свои недостатки. Они склонны к дрейфу, то есть постепенному увеличению ошибки измерения со временем. Поэтому они требуют регулярной калибровки по данным со спутника или другого источника.
Для решения этих проблем ученые разрабатывают новый тип акселерометра на основе квантовой физики. Квантовый акселерометр использует ультрахолодные атомы для проведения точных измерений ускорения. При охлаждении до сверхнизких температур атомы проявляют свою квантовую природу, то есть ведут себя как волны, а не как частицы. Это позволяет использовать лазерные импульсы для создания оптической линейки, по которой можно измерять перемещение атомов.
Квантовый акселерометр имеет ряд преимуществ перед обычными акселерометрами. Он не подвержен дрейфу, так как не зависит от механических или электрических элементов, которые могут изнашиваться или деформироваться. Он также не требует вакуумной системы для поддержания ультрахолодных атомов, так как использует специальную технологию лазерного охлаждения и захвата атомов. Кроме того, он может работать в широком диапазоне температур и вибраций.
Ученые из Имперского колледжа Лондона представили прототип квантового акселерометра в 2018 году. С тех пор они совершенствовали его до такой степени, что его можно было испытать в реальных условиях. В мае 2021 года они установили квантовый акселерометр на борту нового исследовательского корабля Королевского флота XV Patrick Blackett и провели серию экспериментов в Лондоне.
Квантовый акселерометр — это новаторская технология, стоящая в авангарде квантовых инноваций. Он может преобразовать навигацию, сделав ее более точной и безопасной
— профессор Питер Хейнс, директор Центра квантовой инженерии, науки и технологий (QuEST) в Имперском колледже Лондона.
Квантовая навигация может иметь множество применений в различных областях, таких как геодезия, геология, археология, оборона и безопасность. Она может помочь обнаруживать подземные структуры и объекты разного размера и состава, от природных до искусственных. Она также может повысить устойчивость к помехам и атакам на спутниковую навигацию.
- Евгения Бусина
- The Imperial College London
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Выяснилось, что суша вокруг Аральского моря... стремительно поднимается
И ученые сумели разгадать эту удивительную загадку природы....

В каменных гробницах древней Ирландии похоронены вовсе не те, о ком думали ученые
Генетический анализ переписывает историю неолита....

Тайна последнего Папы: сбудется ли пророчество XII века?
Три Петра, один престол: что об этом говорят историки и сам Ватикан?...

Что 220 дней в космосе сделали с 70-летним мужчиной?
Старейший астронавт NASA возвратился на Землю....

Застукали: антарктического гигантского кальмара впервые запечатлели в естественной среде
Прошёл век после открытия вида....

Невероятная история единственного человека, которому удалось проникнуть в Зону 51
Джерри Фримен не только выбрался оттуда, но и рассказал, что увидел....

«Двух монстров» засняли на камеру в знаменитом шотландском озере
Ученые не верят, но кого тогда видел очевидец?...

Американские военные приступили к строительству орбитального авианосца
Пентагон говорит, что это исключительно ради мира. Но эксперты прогнозируют военную эскалацию в космосе....

Оказывается, римляне периодически врали о своих победах в исторических хрониках
Недавно археологи обнаружили в Судане очередное яркое тому подтверждение....

Бетон в туннелях для автотранспорта гниёт удивительно быстро
Казалось бы прочный материал гложут микробы....

Китай испытал новейшую водородную, но не ядерную бомбу
Кто-то говорит, что это инновация, а кто-то, что такое уже было в СССР....

Ученые заставили человеческий глаз видеть совершенно новый цвет
Он называется оло, и его практически не описать словами....

Шимпанзе устраивают пьяные вечеринки
Похоже, у человека и близких видов это в крови....

Вороны еще раз подтвердили свою гениальность
Исследование показало, что эти птицы отлично распознают… геометрические фигуры....

Ученые доказали: вода на Земле не из космоса, а своя собственная
Она зародилась «автоматически». И это в корне меняет теорию жизни во Вселенной....

Нюхали чужие футболки: женщины полагаются на запах при выборе друзей
Наука требует странных опытов....