Казалось бы, невозможно: наноструктура сжимает свет в пучок 10 000 раз тоньше человеческого волоса
До недавнего времени физики считали, что нельзя сжать свет ниже так называемого дифракционного предела, за исключением случаев использования металлических наночастиц, которые также поглощают свет.
В результате казалось невозможным сильно сжать свет в диэлектрических материалах, таких как кремний, которые необходимы для информационных технологий и имеют преимущество, заключающееся в том, что они не поглощают свет. Еще в 2006 году теоретически было оказано, что дифракционный предел не распространяется на диэлектрики. Однако никому не удалось продемонстрировать это на практике. Причина в том, что для этого требуются сложные нанотехнологии, которые до недавнего времени были недоступны.
Исследовательская группа из Технического университета Дании создала устройство, известное как «диэлектрическая нанополость», которое успешно концентрирует свет в объеме, в 12 раз меньше дифракционного предела. Открытие является новаторским в оптических исследованиях и недавно было опубликовано в журнале Nature Communications.

Cтруктура напоминает галстук-бабочку. Она сжимает свет в пространстве, а наноструктуры вокруг него сохраняют его во времени. Результатом является сжатие света до наименьшего на сегодняшний день масштаба — самого маленького в мире фотона в диэлектрическом материале.
— Маркус Альбрехтсен, аспирант DTU Electro и первый автор новой статьи.
Оптические нанорезонаторы — структуры, которые были специально разработаны для удержания света таким образом, что он не распространяется нормально, а отбрасывается взад и вперед, как если бы два зеркала были обращены друг к другу.
Чем ближе зеркала друг к другу, тем интенсивнее становится свет между ними. Для этого эксперимента исследователи создали структуру в виде галстука-бабочки, которая благодаря своей уникальной форме особенно эффективно сжимает фотоны.
Открытие может иметь решающее значение для разработки революционных технологий, которые могут уменьшить количество потребляющих энергию компонентов в центрах обработки данных, компьютерах, телефонах и т. д.
Энергопотребление компьютеров и центров обработки данных продолжает расти, и существует потребность в более устойчивых архитектурах микросхем, потребляющих меньше энергии. Этого можно добиться заменой электрических цепей оптическими компонентами.
Видение исследователей состоит в том, чтобы использовать такое же разделение труда между светом и электронами, как и в Интернете, где свет используется для связи, а электроника — для обработки данных.
Единственное отличие состоит в том, что обе функции должны быть встроены в один и тот же чип, что требует, чтобы свет был сжат до того же размера, что и электронные компоненты.
В результате казалось невозможным сильно сжать свет в диэлектрических материалах, таких как кремний, которые необходимы для информационных технологий и имеют преимущество, заключающееся в том, что они не поглощают свет. Еще в 2006 году теоретически было оказано, что дифракционный предел не распространяется на диэлектрики. Однако никому не удалось продемонстрировать это на практике. Причина в том, что для этого требуются сложные нанотехнологии, которые до недавнего времени были недоступны.
Исследовательская группа из Технического университета Дании создала устройство, известное как «диэлектрическая нанополость», которое успешно концентрирует свет в объеме, в 12 раз меньше дифракционного предела. Открытие является новаторским в оптических исследованиях и недавно было опубликовано в журнале Nature Communications.

Cтруктура напоминает галстук-бабочку. Она сжимает свет в пространстве, а наноструктуры вокруг него сохраняют его во времени. Результатом является сжатие света до наименьшего на сегодняшний день масштаба — самого маленького в мире фотона в диэлектрическом материале.
Хотя компьютерные расчеты показывают, что можно сконцентрировать свет в бесконечно малой точке, это применимо только в теории. Фактические результаты ограничены технической возможностью изготовить мелкие детали, например, на микрочипе. Мы запрограммировали наши знания о реальной фотонной нанотехнологии и ее текущих ограничениях в компьютер. Затем мы попросили компьютер найти схему, которая собирает фотоны на беспрецедентно малой площади — в оптической нанорезонаторе — которую мы также смогли построить в лаборатории
— Маркус Альбрехтсен, аспирант DTU Electro и первый автор новой статьи.
Оптические нанорезонаторы — структуры, которые были специально разработаны для удержания света таким образом, что он не распространяется нормально, а отбрасывается взад и вперед, как если бы два зеркала были обращены друг к другу.
Чем ближе зеркала друг к другу, тем интенсивнее становится свет между ними. Для этого эксперимента исследователи создали структуру в виде галстука-бабочки, которая благодаря своей уникальной форме особенно эффективно сжимает фотоны.
Открытие может иметь решающее значение для разработки революционных технологий, которые могут уменьшить количество потребляющих энергию компонентов в центрах обработки данных, компьютерах, телефонах и т. д.
Энергопотребление компьютеров и центров обработки данных продолжает расти, и существует потребность в более устойчивых архитектурах микросхем, потребляющих меньше энергии. Этого можно добиться заменой электрических цепей оптическими компонентами.
Видение исследователей состоит в том, чтобы использовать такое же разделение труда между светом и электронами, как и в Интернете, где свет используется для связи, а электроника — для обработки данных.
Единственное отличие состоит в том, что обе функции должны быть встроены в один и тот же чип, что требует, чтобы свет был сжат до того же размера, что и электронные компоненты.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас
Почему Китай так стремительно обгоняет США: Эксперт вскрыл секрет, который не замечал никто
Аналитик Дэн Ван уверен: если Запад не начнет срочно меняться, то он обречен перед Востоком...
Великий обман древности: итальянские ученые доказали, что историк соврал о гибели Помпей
Случайная надпись на стене перечеркнула официальную дату смерти города...
Роковая ошибка древних врачей: Почему современные ученые считают, что Александра Македонского похоронили заживо?
Он слышал плач своих полководцев и видел приготовления к бальзамированию, но не мог пошевелиться. Тело великого царя стало его собственным гробом...
Он все слышал, но не мог пошевелиться: Жуткая правда о том, почему тело Александра Македонского не разлагалось
Великий царь стал заложником собственной плоти. Диагноз, который поставили спустя 2300 лет, объясняет все: и «чудо» нетленности, и страшную смерть....
Невероятная находка в Дании: как золотые копья возрастом 2800 лет могут переписать историю Европы?
Ученые рассказали, зачем древние люди закопали драгоценное оружие у священного источника. Ответ потрясает...
Почему Китай так стремительно обгоняет США: секрет, который не замечал никто. Часть 2
Уханьское метро, темная сторона инженерного государства и есть ли шансы у Штатов...
Новое исследование показало: Стоунхендж столетиями «водил за нос». Похоже, историю опять придется переписывать
Оказалось, что сенсация скрывалась в огромном круге, состоящем из загадочных шахт...
Египет хотел создать МОРЕ в пустыне Сахара: почему проект заморозили на 60 лет?
Часть первая: Реальный шанс спастись от всемирного потопа...
ЦРУ, море в пустыне и нефть: кто и зачем остановил проект Египта на 60 лет?
Часть вторая: Холодная война, 200 ядерных взрывов и 15 миллиардов, которые могут все изменить...
Российский ученый уверен, что максимально приблизился к разгадке тайны шаровой молнии
Похоже, наука ошибалась: это не плазменный сгусток, а «живой кристалл» из частиц-призраков...
Алкогольная цивилизация: древние люди освоили земледелие... ради пива
Ученые давно подозревали это, а новые находки только подлили масла в огонь «пивной» версии...
Новый российский материал спасает от пожаров и взрывов аккумуляторов
Почему эксперты называют разработку сахалинских ученых настоящим прорывом в сохранении энергии?...
Людовик XIV умер совсем не от гангрены: ученые сумели раскрыть истину лишь 310 лет спустя
Эксперты говорят: французский король был обречен. Медикам того времени была совершенно неизвестна его болезнь...