
Казалось бы, невозможно: наноструктура сжимает свет в пучок 10 000 раз тоньше человеческого волоса
До недавнего времени физики считали, что нельзя сжать свет ниже так называемого дифракционного предела, за исключением случаев использования металлических наночастиц, которые также поглощают свет.
В результате казалось невозможным сильно сжать свет в диэлектрических материалах, таких как кремний, которые необходимы для информационных технологий и имеют преимущество, заключающееся в том, что они не поглощают свет. Еще в 2006 году теоретически было оказано, что дифракционный предел не распространяется на диэлектрики. Однако никому не удалось продемонстрировать это на практике. Причина в том, что для этого требуются сложные нанотехнологии, которые до недавнего времени были недоступны.
Исследовательская группа из Технического университета Дании создала устройство, известное как «диэлектрическая нанополость», которое успешно концентрирует свет в объеме, в 12 раз меньше дифракционного предела. Открытие является новаторским в оптических исследованиях и недавно было опубликовано в журнале Nature Communications.

Cтруктура напоминает галстук-бабочку. Она сжимает свет в пространстве, а наноструктуры вокруг него сохраняют его во времени. Результатом является сжатие света до наименьшего на сегодняшний день масштаба — самого маленького в мире фотона в диэлектрическом материале.
— Маркус Альбрехтсен, аспирант DTU Electro и первый автор новой статьи.
Оптические нанорезонаторы — структуры, которые были специально разработаны для удержания света таким образом, что он не распространяется нормально, а отбрасывается взад и вперед, как если бы два зеркала были обращены друг к другу.
Чем ближе зеркала друг к другу, тем интенсивнее становится свет между ними. Для этого эксперимента исследователи создали структуру в виде галстука-бабочки, которая благодаря своей уникальной форме особенно эффективно сжимает фотоны.
Открытие может иметь решающее значение для разработки революционных технологий, которые могут уменьшить количество потребляющих энергию компонентов в центрах обработки данных, компьютерах, телефонах и т. д.
Энергопотребление компьютеров и центров обработки данных продолжает расти, и существует потребность в более устойчивых архитектурах микросхем, потребляющих меньше энергии. Этого можно добиться заменой электрических цепей оптическими компонентами.
Видение исследователей состоит в том, чтобы использовать такое же разделение труда между светом и электронами, как и в Интернете, где свет используется для связи, а электроника — для обработки данных.
Единственное отличие состоит в том, что обе функции должны быть встроены в один и тот же чип, что требует, чтобы свет был сжат до того же размера, что и электронные компоненты.
В результате казалось невозможным сильно сжать свет в диэлектрических материалах, таких как кремний, которые необходимы для информационных технологий и имеют преимущество, заключающееся в том, что они не поглощают свет. Еще в 2006 году теоретически было оказано, что дифракционный предел не распространяется на диэлектрики. Однако никому не удалось продемонстрировать это на практике. Причина в том, что для этого требуются сложные нанотехнологии, которые до недавнего времени были недоступны.
Исследовательская группа из Технического университета Дании создала устройство, известное как «диэлектрическая нанополость», которое успешно концентрирует свет в объеме, в 12 раз меньше дифракционного предела. Открытие является новаторским в оптических исследованиях и недавно было опубликовано в журнале Nature Communications.

Cтруктура напоминает галстук-бабочку. Она сжимает свет в пространстве, а наноструктуры вокруг него сохраняют его во времени. Результатом является сжатие света до наименьшего на сегодняшний день масштаба — самого маленького в мире фотона в диэлектрическом материале.
Хотя компьютерные расчеты показывают, что можно сконцентрировать свет в бесконечно малой точке, это применимо только в теории. Фактические результаты ограничены технической возможностью изготовить мелкие детали, например, на микрочипе. Мы запрограммировали наши знания о реальной фотонной нанотехнологии и ее текущих ограничениях в компьютер. Затем мы попросили компьютер найти схему, которая собирает фотоны на беспрецедентно малой площади — в оптической нанорезонаторе — которую мы также смогли построить в лаборатории
— Маркус Альбрехтсен, аспирант DTU Electro и первый автор новой статьи.
Оптические нанорезонаторы — структуры, которые были специально разработаны для удержания света таким образом, что он не распространяется нормально, а отбрасывается взад и вперед, как если бы два зеркала были обращены друг к другу.
Чем ближе зеркала друг к другу, тем интенсивнее становится свет между ними. Для этого эксперимента исследователи создали структуру в виде галстука-бабочки, которая благодаря своей уникальной форме особенно эффективно сжимает фотоны.
Открытие может иметь решающее значение для разработки революционных технологий, которые могут уменьшить количество потребляющих энергию компонентов в центрах обработки данных, компьютерах, телефонах и т. д.
Энергопотребление компьютеров и центров обработки данных продолжает расти, и существует потребность в более устойчивых архитектурах микросхем, потребляющих меньше энергии. Этого можно добиться заменой электрических цепей оптическими компонентами.
Видение исследователей состоит в том, чтобы использовать такое же разделение труда между светом и электронами, как и в Интернете, где свет используется для связи, а электроника — для обработки данных.
Единственное отличие состоит в том, что обе функции должны быть встроены в один и тот же чип, что требует, чтобы свет был сжат до того же размера, что и электронные компоненты.
Наши новостные каналы
Подписывайтесь и будьте в курсе свежих новостей и важнейших событиях дня.
Рекомендуем для вас

Северное полушарие Земли стремительно темнеет. И это плохая новость для всех
Почему Россия находится в зоне особого риска и можно ли остановить этот процесс?...

Генетики вычислили, какую страшную цену заплатили наши предки за высокий интеллект
Новое исследование еще раз доказало, что эволюция требует огромных жертв...

Ученые наконец-то раскрыли главную загадку града. Старая теория оказалась неверной
Поразительное открытие помогли сделать грозовые «отпечатки пальцев»...

Тайна необъяснимых северных кратеров разгадана спустя 11 лет после появления первого провала на Ямале
Почему российские ученые не рады своему открытию, называя его «русской рулеткой»?...

Почему на космическое ноу-хау «солнечный свет по запросу» ополчились астрономы всего мира?
Американский стартап обещает, что все будет хорошо, но ему никто не верит...

ИИ научился создавать вирусы, совершенно неизвестные ученым
Почему эксперты встревожены и есть ли у человечества шансы после таких открытий?...

Древние микробы спустя 40 000 лет освобождаются из вечной мерзлоты
Биологи уже бьют тревогу: оттаявшие микроорганизмы могут стать причиной следующей пандемии...

Рядом с пирамидами Гизы обнаружены секретные тоннели, ведущие в забытый подземный мир
Быть может, их построили даже не египтяне. Но кто тогда?...

Астрофизики Гавайского университета неожиданно разгадали тайну… солнечного дождя
Рассказываем, почему новое открытие важно для каждого жителя Земли...

Как мадагаскарские лемуры ускоряют покорение космоса?
И почему именно эти животные оказались самые ценными для будущего всего человечества?...

Наше тело — это… большой мозг: эксперимент русского ученого может совершить революцию в медицине
Эксперты говорят: «Открытие клеточной памяти — это огромный шаг к медицине, где лечение будет подбираться точно для конкретного человека»...