ВСЛУХ

Переносной гаджет-сканер терагерцового диапазона: как рентген, но безопаснее

Переносной гаджет-сканер терагерцового диапазона: как рентген, но безопаснее
Устройство, созданное Хироаки Минамиде и его командой, эффективно преобразует инфракрасное излучение в терагерцовые волны. Он может генерировать терагерцовое излучение во всем диапазоне терагерцового диапазона.


Терагерцовое электромагнитное излучение с длиной волны от 0,1 до 1 миллиметра лежит между инфракрасным и микроволновым диапазонами. Оно имеет уникальные свойства: может проникать через многие материалы, такие как пластик, бумага, одежда и ткани, не вызывая ионизации и повреждения клеток. Также терагерцовое излучение может распознавать химические соединения по их спектрам поглощения. Это делает его очень полезным для различных приложений, таких как неразрушающий контроль, анализ лекарственных препаратов, досмотр грузов и людей, обнаружение взрывчатых веществ и наркотиков, медицинская диагностика и т. д.

Однако, создание источников и приемников терагерцового излучения представляет собой большую техническую проблему. Традиционные методы генерации терагерцового излучения основаны на использовании высокочастотных электронных устройств или оптических лазеров с нелинейными кристаллами. Однако, эти методы имеют ряд недостатков: они требуют большого количества энергии, занимают много места, имеют низкую эффективность и сложность настройки. В результате терагерцовые сканеры до недавнего времени были дорогими и громоздкими устройствами, которые не подходили для переносного использования.

Но японские ученые из института Riken сделали прорыв в области терагерцовой технологии. Они разработали переносной гаджет-сканер терагерцового диапазона, который может работать как рентген, но без вредного излучения. Сканер имеет размер ладони и весит всего 300 граммов.

Переносной гаджет-сканер терагерцового диапазона: как рентген, но безопаснее


Чтобы миниатюризировать наш источник терагерцовых волн, мы заменили объемный кристаллический слиток ниобата лития, который мы использовали ранее, тонким кристаллом ниобата лития с искусственной микроструктурой, модулированной поляризацией, который называется периодически поляризованным кристаллом ниобата лития (PPLN). Кристалл PPLN, обычно используемый в области видимого света, позволил нам разработать портативное устройство благодаря его более высокой эффективности преобразования света

— Хироаки Минамиде.

Инфракрасный лазер излучает короткие импульсы света с частотой 1 килогерца, которые попадают на кристалл PPLN. Кристалл PPLN является нелинейным материалом, который может преобразовывать частоту света по определенному закону. В результате на выходе кристалла PPLN получается терагерцовое излучение с частотой от 0,1 до 2 терагерца.

Сканер работает по принципу отражения терагерцового излучения от объекта. Терагерцовое излучение, выходящее из кристалла PPLN, направляется на объект, который нужно просканировать. Затем терагерцовое излучение, отраженное от объекта, снова попадает на кристалл PPLN, где оно преобразуется обратно в инфракрасное излучение. Оно, в свою очередь, детектируется фотодиодом, который преобразует излучение в электрический сигнал. Этот сигнал анализируется специальным программным обеспечением, которое строит изображение объекта или его спектр поглощения.

Терагерцовые волны способны определять химический состав разных веществ по их уникальным спектрам поглощения. Этот метод позволяет легко различать бесцветные жидкости, такие как керосин и ацетон, которые кажутся одинаковыми на глаз. Изобретение японских ученых может получить широкий спектр применения: от сканеров безопасности до исследования исторических произведений искусства.

С помощью терагерцовых волн также можно анализировать промышленные краски и покрытия, не повреждая их, в отличие от других методов. Это может быть полезно для разных объектов, например, для новых автомобилей или фармацевтических таблеток. Возможно задействовать терагерцовые устройства в роботах, которые будут осматривать промышленные трубы на предмет коррозии, или на дронах, которые будут проверять состояние краски на опорах ЛЭП.

Благодаря этим и другим возможностям можно лучше понимать, как материалы взаимодействуют и разрушаются в разных условиях. Если применять неразрушающие технологии для решения этих проблем, можно более эффективно управлять производственными процессами в реальном времени и, например, вносить коррективы для увеличения срока службы конструкций. Это принесет большие экономические и экологические выгоды.

Автор:

Использованы фотографии: Riken

Мы в Мы в Яндекс Дзен
Двухслойный графен из МФТИ: материал будущего для детектирования терагерцового излученияКитайские ученые открыли новый метод генерации терагерцового излучения

Рисунки по кайфу

Рисунки по кайфу

Ученые определили, что древние перуанские художники рисовали на скалах, приняв галлюциногенные вещества....
  • 401