ВСЛУХ

Курчатовский биореактор станет основой долгосрочных космических путешествий

Курчатовский биореактор станет основой долгосрочных космических путешествий
Специалисты Курчатовского института представили новое устройство, которое может стать неотъемлемой частью системы жизнеобеспечения для космических экспедиций и будущей колонизации других планет. Исследование, опубликованное в журнале Nanobiotechnology Reports, предложило использовать фотобиореактор для выращивания одноклеточной микроводоросли Chlorella vulgaris. Благодаря процессу фотосинтеза, эта микроводоросль успешно абсорбирует углекислый газ и производит кислород, даже эффективнее, чем высшие растения.


Главное преимущество Chlorella заключается в том, что каждая клетка микроводоросли способна производить кислород, в то время как у высших растений это происходит только в их листьях. Сотрудники Курчатовского института разработали тонкослойный трубчатый фотобиореактор с оптоволоконной системой освещения, специально предназначенный для выращивания Chlorella. Такая конструкция позволяет обеспечить каждую клетку микроводоросли достаточным количеством света, даже при высокой концентрации биомассы. Это увеличивает скорость роста микроводоросли и делает процесс более эффективным.

Не только эффективность, но и энергоэффективность стала важным критерием при разработке установки. Фотобиореактор использует LED-свет, красный и синий, соответствующие спектру поглощения клеток Chlorella. Результаты исследования показали, что микроводоросль растет гораздо быстрее в фотобиореакторе по сравнению с обычными методами, а объем биомассы увеличивается в четыре раза.

Для обеспечения команды из восьми человек понадобится примерно 62 километра трубки и 35 километров оптоволокна. Однако остается следующая инженерная задача – организовать такую установку в условиях космического полета. Специалисты Курчатовского института планируют испытать разработанную установку на Международной космической станции, чтобы проверить ее работоспособность в реальных условиях.

Человек в среднем потребляет 816 граммов кислорода в день. Учитывая полученные результаты, в том числе данные биохимического анализа биомассы, мы считаем нашу установку перспективной основой для создания замкнутой системы жизнеобеспечения для пилотируемых космических аппаратов или поселения на поверхности другой планеты или спутника

– Даниил Сухинов, лаборант-исследователь отдела прикладной биоэнергетики Курчатовского комплекса НБИКС-природоподобных технологий.

Это открытие в области фотобиореакторов представляет большой интерес для будущих длительных космических экспедиций и возможной колонизации других планет. Эти устройства могут обеспечить жизнеобеспечение для космонавтов, создавая замкнутый цикл с поддержкой кислорода и пищи. Они являются одним из ключевых элементов для достижения долгосрочной устойчивости космических миссий и освоения космоса.

Автор:

Мы в Мы в Яндекс Дзен
Уникальный биореактор превращает микробов в биогаз и биотопливоУченые «взломали» самые ранние стадии фотосинтеза, естественную машину, которая питает подавляющее большинство жизни на Земле

Рисунки по кайфу

Рисунки по кайфу

Ученые определили, что древние перуанские художники рисовали на скалах, приняв галлюциногенные вещества....
  • 417
Нас ждет новая пандемия?

Нас ждет новая пандемия?

Африка в очередной раз подтвердила, что она — инкубатор смертельно опасных вирусов....
  • 383